Results 1  10
of
1,560,868
Design Considerations of a Multiple Inner Product and Accumulate Vector Functional Unit
"... A large number of scientific applications require computations that involve operations on sparse matrices. Due to irregularities induced by the diverse sparsity patterns, many operations on sparse matrices execute inefficiently on traditional scalar and vector architectures. In order to tackle this ..."
Abstract
 Add to MetaCart
this issue a scheme has been proposed [1] that alleviates the sparse matrix storage and computation overhead on vector processors. The scheme introduces a new sparse matrix storage format and utilizes the Multiple Inner Product and Accumulate (MIPA) vector pipelined functional unit to perform the sparse
A semantics of multiple inheritance
 Information and Computation
, 1988
"... There are two major ways of structuring data in programming languages. The first and common one, used for example in Pascal, can be said to derive from standard branches of mathematics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variant types) and func ..."
Abstract

Cited by 528 (9 self)
 Add to MetaCart
There are two major ways of structuring data in programming languages. The first and common one, used for example in Pascal, can be said to derive from standard branches of mathematics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variant types
Training Products of Experts by Minimizing Contrastive Divergence
, 2002
"... It is possible to combine multiple latentvariable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values of the l ..."
Abstract

Cited by 850 (75 self)
 Add to MetaCart
It is possible to combine multiple latentvariable models of the same data by multiplying their probability distributions together and then renormalizing. This way of combining individual “expert ” models makes it hard to generate samples from the combined model but easy to infer the values
Capacity of a Mobile MultipleAntenna Communication Link in Rayleigh Flat Fading
"... We analyze a mobile wireless link comprising M transmitter and N receiver antennas operating in a Rayleigh flatfading environment. The propagation coefficients between every pair of transmitter and receiver antennas are statistically independent and unknown; they remain constant for a coherence int ..."
Abstract

Cited by 495 (22 self)
 Add to MetaCart
interval of T symbol periods, after which they change to new independent values which they maintain for another T symbol periods, and so on. Computing the link capacity, associated with channel coding over multiple fading intervals, requires an optimization over the joint density of T M complex transmitted
Fully homomorphic encryption using ideal lattices
 In Proc. STOC
, 2009
"... We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitra ..."
Abstract

Cited by 663 (17 self)
 Add to MetaCart
that is almost bootstrappable. Latticebased cryptosystems typically have decryption algorithms with low circuit complexity, often dominated by an inner product computation that is in NC1. Also, ideal lattices provide both additive and multiplicative homomorphisms (modulo a publickey ideal in a polynomial ring
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
A Simple Proof of the Restricted Isometry Property for Random Matrices
 CONSTR APPROX
, 2008
"... We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided algorithmical ..."
Abstract

Cited by 631 (64 self)
 Add to MetaCart
We give a simple technique for verifying the Restricted Isometry Property (as introduced by Candès and Tao) for random matrices that underlies Compressed Sensing. Our approach has two main ingredients: (i) concentration inequalities for random inner products that have recently provided
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
 in Conference Record of The TwentySeventh Asilomar Conference on Signals, Systems and Computers
, 1993
"... In this paper we describe a recursive algorithm to compute representations of functions with respect to nonorthogonal and possibly overcomplete dictionaries of elementary building blocks e.g. aiEne (wa.velet) frames. We propoeea modification to the Matching Pursuit algorithm of Mallat and Zhang (199 ..."
Abstract

Cited by 637 (1 self)
 Add to MetaCart
recursively. where fk is the current approximation, and Rkf the current residual (error). Using initial values ofR0f = 1, fo = 0, and k = 1, the MP algorithm is comprised of the following steps,.,.41) Compute the innerproducts {(Rkf,z)}. (H) Find flki such that (III) Set, I(R*f,1:n 1+,)l asupl
Text Classification using String Kernels
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract

Cited by 495 (7 self)
 Add to MetaCart
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily
An integrated theory of the mind
 PSYCHOLOGICAL REVIEW
, 2004
"... There has been a proliferation of proposed mental modules in an attempt to account for different cognitive functions but so far there has been no successful account of their integration. ACTR (Anderson & Lebiere, 1998) has evolved into a theory that consists of multiple modules but also explain ..."
Abstract

Cited by 780 (73 self)
 Add to MetaCart
There has been a proliferation of proposed mental modules in an attempt to account for different cognitive functions but so far there has been no successful account of their integration. ACTR (Anderson & Lebiere, 1998) has evolved into a theory that consists of multiple modules but also
Results 1  10
of
1,560,868