• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 69,323
Next 10 →

Study of Robust and Intelligent Surveillance in Visible and Multimodal Framework

by Praveen Kumar, Ankush Mittal, Padam Kumar , 2007
"... This paper gives a review of current state of the art in the development of robust and intelligent surveillance systems, going beyond traditional vision based framework to more advanced multi-modal framework. The goal of automated surveillance system is to assist the human operator in scene analysis ..."
Abstract - Cited by 8 (1 self) - Add to MetaCart
This paper gives a review of current state of the art in the development of robust and intelligent surveillance systems, going beyond traditional vision based framework to more advanced multi-modal framework. The goal of automated surveillance system is to assist the human operator in scene

Vision-Based Interaction within a Multimodal Framework

by Vítor Sá, Cornelius Malerczyk Michael Schnaider
"... Our contribution is to the field of video-based interaction techniques and is integrated in the home environment of the EMBASSI project. This project addresses innovative methods of man-machine interaction achieved through the development of intelligent assistance and anthropomorphic user interfaces ..."
Abstract - Add to MetaCart
interfaces. Within this project, multimodal techniques represent a basic requirement, especially considering those related to the integration of modalities. We are using a stereoscopic approach to allow the natural selection of devices via pointing gestures. The pointing hand is segmented from the video

A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications

by Anind K. Dey, Gregory D. Abowd, Daniel Salber , 2001
"... Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is accelerating. One challenge that remains in this emerging research field is the ability to enhance the behavior of any application by informing it of the context ..."
Abstract - Cited by 891 (28 self) - Add to MetaCart
of context, we are focusing our efforts on the pieces of context that can be inferred automatically from sensors in a physical environment. We then present a conceptual framework that separates the acquisition and representation of context from the delivery and reaction to context by a contextaware

Probabilistic Visual Learning for Object Representation

by Baback Moghaddam, Alex Pentland , 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract - Cited by 705 (15 self) - Add to MetaCart
-of-Gaussians model (for multimodal distributions). These probability densities are then used to formulate a maximum-likelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection

Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations

by Wolfgang Maass, Thomas Natschläger, Henry Markram
"... A key challenge for neural modeling is to explain how a continuous stream of multi-modal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real-time. We propose a new computational model for real-time computing on time-var ..."
Abstract - Cited by 466 (39 self) - Add to MetaCart
A key challenge for neural modeling is to explain how a continuous stream of multi-modal input from a rapidly changing environment can be processed by stereotypical recurrent circuits of integrate-and-fire neurons in real-time. We propose a new computational model for real-time computing on time

Development of a generic multimodal framework for handling error patterns during HMI

by Gregor Mcglaun, Manfred Lang, Gerhard Rigoll - in Proc. of SCI
"... In this contribution, we present a generic and therefore easily scalable multimodal framework for error robust processing of user interactions in various domains. The system provides a generic kernel for evaluating user inputs and additional pieces of information from situational, personal, and func ..."
Abstract - Cited by 5 (1 self) - Add to MetaCart
In this contribution, we present a generic and therefore easily scalable multimodal framework for error robust processing of user interactions in various domains. The system provides a generic kernel for evaluating user inputs and additional pieces of information from situational, personal

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping, Alex Smola , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract - Cited by 958 (5 self) - Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance

Contour Tracking By Stochastic Propagation of Conditional Density

by Michael Isard, Andrew Blake , 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract - Cited by 658 (24 self) - Add to MetaCart
. In Proc. European Conf. Computer Vision, 1996, pp. 343--356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent simultaneous alternative hypotheses. Extensions to the Kalman filter to handle multiple data associations work satisfactorily in the simple case of point targets, but do not extend naturally to continuous curves. A new, stochastic algorithm is proposed here, the Condensation algorithm --- Conditional Density Propagation over time. It uses `factored sampling', a method previously applied to interpretation of static images, in which the distribution of possible interpretations is represented by a randomly generated set of representatives. The Condensation algorithm combines factored sampling with learned dynamical models to propagate an entire probability distribution for object pos...

CONDENSATION - conditional density propagation for visual tracking

by Michael Isard, Andrew Blake - International Journal of Computer Vision , 1998
"... The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously appli ..."
Abstract - Cited by 1499 (12 self) - Add to MetaCart
The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimodal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses "factored sampling", previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. Condensation uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near real-time. Contents 1 Tracking curves in clutter 2 2 Discrete-time propagation of state density 3 3 Factored sampling 6 4 The Condensation algorithm 8 5 Stochastic dynamical models for curve motion 10 6 Observation model 13 7 Applying the Condensation algorithm to video-streams 17 8 Conclusions 26 A Non-line...

Image registration methods: a survey

by Barbara Zitová, Jan Flusser - IMAGE AND VISION COMPUTING , 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract - Cited by 734 (9 self) - Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.
Next 10 →
Results 1 - 10 of 69,323
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University