Results 1  10
of
5,782
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2831 (123 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little
On the algorithmic implementation of multiclass kernelbased vector machines
 Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract

Cited by 559 (13 self)
 Add to MetaCart
In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic
An introduction to kernelbased learning algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2001
"... This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
Local features and kernels for classification of texture and object categories: a comprehensive study
 International Journal of Computer Vision
, 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a largescale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract

Cited by 653 (34 self)
 Add to MetaCart
and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ 2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels
A tutorial on support vector machines for pattern recognition
 Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and nonseparable data, working through a nontrivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract

Cited by 3393 (12 self)
 Add to MetaCart
SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1051 (0 self)
 Add to MetaCart
. However, training with a maximum likelihood score will produce nonsparse kernel machines. Instead, we train an SVM, then train the parameters of an additional sigmoid function to map the SVM outputs into probabilities. This chapter compares classification error rate and likelihood scores for an SVM plus
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
vector machine’ (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine ’ (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer basis
Maté: A Tiny Virtual Machine for Sensor Networks
, 2002
"... Composed of tens of thousands of tiny devices with very limited resources ("motes"), sensor networks are subject to novel systems problems and constraints. The large number of motes in a sensor network means that there will often be some failing nodes; networks must be easy to repopulate. ..."
Abstract

Cited by 510 (21 self)
 Add to MetaCart
of virtual machines to provide the user/kernel boundary on motes that have no hardware protection mechanisms.
Using the Nyström Method to Speed Up Kernel Machines
 Advances in Neural Information Processing Systems 13
, 2001
"... A major problem for kernelbased predictors (such as Support Vector Machines and Gaussian processes) is that the amount of computation required to find the solution scales as O(n ), where n is the number of training examples. We show that an approximation to the eigendecomposition of the Gram matrix ..."
Abstract

Cited by 434 (6 self)
 Add to MetaCart
A major problem for kernelbased predictors (such as Support Vector Machines and Gaussian processes) is that the amount of computation required to find the solution scales as O(n ), where n is the number of training examples. We show that an approximation to the eigendecomposition of the Gram
Results 1  10
of
5,782