Results 1  10
of
1,399,261
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
An Efficient Branch and Bound Search Algorithm for Computing K Nearest Neighbors in a Multidimensional Vector Space
, 2002
"... An efficient branch and bound search algorithm is proposed for the computation of the K nearest neighbors in a multidimensional vector space. In a preprocessing step, the sample of feature vectors is decomposed hierarchically using hyperplanes determined by principal component analysis (PCA). During ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
An efficient branch and bound search algorithm is proposed for the computation of the K nearest neighbors in a multidimensional vector space. In a preprocessing step, the sample of feature vectors is decomposed hierarchically using hyperplanes determined by principal component analysis (PCA
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
SupportVector Networks
 Machine Learning
, 1995
"... The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special pr ..."
Abstract

Cited by 3621 (35 self)
 Add to MetaCart
The supportvector network is a new learning machine for twogroup classification problems. The machine conceptually implements the following idea: input vectors are nonlinearly mapped to a very highdimension feature space. In this feature space a linear decision surface is constructed. Special
Statistical Analysis of Cointegrated Vectors
 Journal of Economic Dynamics and Control
, 1988
"... We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number of dimen ..."
Abstract

Cited by 2576 (12 self)
 Add to MetaCart
We consider a nonstationary vector autoregressive process which is integrated of order 1, and generated by i.i.d. Gaussian errors. We then derive the maximum likelihood estimator of the space of cointegration vectors and the likelihood ratio test of the hypothesis that it has a given number
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a given formalism supports. The predominant methodologies and formalisms available, however, support only orthogonal separations of concerns, along single dimensions of composition and decomposition. These characteristics lead to a number of wellknown and difficult problems. This paper describes a new paradigm for modeling and implementing software artifacts, one that permits separation of overlapping concerns along multiple dimensions of composition and decomposition. This approach addresses numerous problems throughout the software lifecycle in achieving wellengineered, evolvable, flexible software artifacts and traceability across artifacts.
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
are reported, considering as th performance criteria th number of page I/O's and th number of distance computations. Th results demonstratethm th Mtree indeed extendsth domain of applicability beyond th traditional vector spaces, performs reasonably well inhE[94Kv#E44V[vh data spaces, and scales well
LIBSVM: a Library for Support Vector Machines
, 2001
"... LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1 ..."
Abstract

Cited by 6287 (82 self)
 Add to MetaCart
LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1
A practical guide to support vector classification
, 2010
"... The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results. ..."
Abstract

Cited by 787 (7 self)
 Add to MetaCart
The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results.
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Results 1  10
of
1,399,261