• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 6,666
Next 10 →

On the algorithmic implementation of multi-class kernel-based vector machines

by Koby Crammer, Yoram Singer, Nello Cristianini, John Shawe-taylor, Bob Williamson - Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract - Cited by 559 (13 self) - Add to MetaCart
In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

by Erin L. Allwein, Robert E. Schapire, Yoram Singer - JOURNAL OF MACHINE LEARNING RESEARCH , 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract - Cited by 561 (20 self) - Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class

Solving multiclass learning problems via error-correcting output codes

by Thomas G. Dietterich, Ghulum Bakiri - JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH , 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract - Cited by 726 (8 self) - Add to MetaCart
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass

A Comparison of Methods for Multiclass Support Vector Machines

by Chih-Wei Hsu, Chih-Jen Lin - IEEE TRANS. NEURAL NETWORKS , 2002
"... Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary class ..."
Abstract - Cited by 952 (22 self) - Add to MetaCart
classifiers. Some authors also proposed methods that consider all classes at once. As it is computationally more expensive to solve multiclass problems, comparisons of these methods using large-scale problems have not been seriously conducted. Especially for methods solving multiclass SVM in one step, a much

Visual categorization with bags of keypoints

by Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cédric Bray - In Workshop on Statistical Learning in Computer Vision, ECCV , 2004
"... Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors of im ..."
Abstract - Cited by 1005 (14 self) - Add to MetaCart
Abstract. We present a novel method for generic visual categorization: the problem of identifying the object content of natural images while generalizing across variations inherent to the object class. This bag of keypoints method is based on vector quantization of affine invariant descriptors

Machine Learning in Automated Text Categorization

by Fabrizio Sebastiani - ACM COMPUTING SURVEYS , 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract - Cited by 1734 (22 self) - Add to MetaCart
The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach

Benchmarking Least Squares Support Vector Machine Classifiers

by Tony Van Gestel, Johan A. K. Suykens, Bart Baesens, Stijn Viaene, Jan Vanthienen, Guido Dedene, Bart De Moor, Joos Vandewalle - NEURAL PROCESSING LETTERS , 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LS-SVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract - Cited by 476 (46 self) - Add to MetaCart
of equations in the dual space. While the SVM classifier has a large margin interpretation, the LS-SVM formulation is related in this paper to a ridge regression approach for classification with binary targets and to Fisher's linear discriminant analysis in the feature space. Multiclass categorization

BoosTexter: A Boosting-based System for Text Categorization

by Robert E. Schapire , Yoram Singer
"... This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text catego ..."
Abstract - Cited by 667 (20 self) - Add to MetaCart
This work focuses on algorithms which learn from examples to perform multiclass text and speech categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe in detail an implementation, called BoosTexter, of the new boosting algorithms for text

On the Learnability and Design of Output Codes for Multiclass Problems

by Koby Crammer, Yoram Singer - In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory , 2000
"... . Output coding is a general framework for solving multiclass categorization problems. Previous research on output codes has focused on building multiclass machines given predefined output codes. In this paper we discuss for the first time the problem of designing output codes for multiclass problem ..."
Abstract - Cited by 228 (6 self) - Add to MetaCart
. Output coding is a general framework for solving multiclass categorization problems. Previous research on output codes has focused on building multiclass machines given predefined output codes. In this paper we discuss for the first time the problem of designing output codes for multiclass

The Symbol Grounding Problem

by Stevan Harnad , 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract - Cited by 1084 (20 self) - Add to MetaCart
There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system
Next 10 →
Results 1 - 10 of 6,666
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University