• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 18,309
Next 10 →

Monte Carlo Statistical Methods

by Christian P. Robert, George Casella , 1998
"... This paper is also the originator of the Markov Chain Monte Carlo methods developed in the following chapters. The potential of these two simultaneous innovations has been discovered much latter by statisticians (Hastings 1970; Geman and Geman 1984) than by of physicists (see also Kirkpatrick et al. ..."
Abstract - Cited by 1498 (30 self) - Add to MetaCart
This paper is also the originator of the Markov Chain Monte Carlo methods developed in the following chapters. The potential of these two simultaneous innovations has been discovered much latter by statisticians (Hastings 1970; Geman and Geman 1984) than by of physicists (see also Kirkpatrick et al

Probabilistic Inference Using Markov Chain Monte Carlo Methods

by Radford M. Neal , 1993
"... Probabilistic inference is an attractive approach to uncertain reasoning and empirical learning in artificial intelligence. Computational difficulties arise, however, because probabilistic models with the necessary realism and flexibility lead to complex distributions over high-dimensional spaces. R ..."
Abstract - Cited by 736 (24 self) - Add to MetaCart
. Related problems in other fields have been tackled using Monte Carlo methods based on sampling using Markov chains, providing a rich array of techniques that can be applied to problems in artificial intelligence. The "Metropolis algorithm" has been used to solve difficult problems in statistical

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics

by Geir Evensen - J. Geophys. Res , 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract - Cited by 800 (23 self) - Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter

Sequential Monte Carlo Methods for Dynamic Systems

by Jun S. Liu, Rong Chen - Journal of the American Statistical Association , 1998
"... A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ..."
Abstract - Cited by 664 (13 self) - Add to MetaCart
A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three

On Sequential Monte Carlo Sampling Methods for Bayesian Filtering

by Arnaud Doucet, Simon Godsill, Christophe Andrieu - STATISTICS AND COMPUTING , 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract - Cited by 1051 (76 self) - Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination

by Peter J. Green - Biometrika , 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract - Cited by 1345 (23 self) - Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model

Graphical models, exponential families, and variational inference

by Martin J. Wainwright, Michael I. Jordan , 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract - Cited by 819 (28 self) - Add to MetaCart
all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

Convergence of Sequential Monte Carlo Methods

by Dan Crisan, Arnaud Doucet - SEQUENTIAL MONTE CARLO METHODS IN PRACTICE , 2000
"... Bayesian estimation problems where the posterior distribution evolves over time through the accumulation of data arise in many applications in statistics and related fields. Recently, a large number of algorithms and applications based on sequential Monte Carlo methods (also known as particle filter ..."
Abstract - Cited by 243 (13 self) - Add to MetaCart
Bayesian estimation problems where the posterior distribution evolves over time through the accumulation of data arise in many applications in statistics and related fields. Recently, a large number of algorithms and applications based on sequential Monte Carlo methods (also known as particle

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
, a simple Monte Carlo method used to perform approximate inference in factored probabilistic models. By using simulated annealing in place of Viterbi decoding in sequence models such as HMMs, CMMs, and CRFs, it is possible to incorporate non-local structure while preserving tractable inference. We

Estimation and Inference in Econometrics

by James G. Mackinnon , 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract - Cited by 1204 (4 self) - Add to MetaCart
of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
Next 10 →
Results 1 - 10 of 18,309
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University