Results 11  20
of
3,525
ON MONOTONICITY IN PARAMETRIC LINEAR COMPLEMENTARITY PROBLEMS
, 1977
"... This paper generalizes the answers that were given by R.W. Cottle to questions that were originally raised by G. Maier. Essentially, we give necessary and sufficient conditions for some notions of monotonicity of solutions for the parametric linear complementarity problem. Our proofs are direct ones ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This paper generalizes the answers that were given by R.W. Cottle to questions that were originally raised by G. Maier. Essentially, we give necessary and sufficient conditions for some notions of monotonicity of solutions for the parametric linear complementarity problem. Our proofs are direct
A PathFollowing InfeasibleInteriorPoint Algorithm for Linear Complementarity Problems
 Optimization Methods and Software
, 1993
"... We describe an infeasibleinteriorpoint algorithm for monotone linear complementarity problems that has polynomial complexity, global linear convergence, and local superlinear convergence with a Qorder of 2. Only one matrix factorization is required per iteration, and the analysis assumes only tha ..."
Abstract

Cited by 56 (10 self)
 Add to MetaCart
We describe an infeasibleinteriorpoint algorithm for monotone linear complementarity problems that has polynomial complexity, global linear convergence, and local superlinear convergence with a Qorder of 2. Only one matrix factorization is required per iteration, and the analysis assumes only
Monotone Semidefinite Complementarity Problems
, 1996
"... . In this paper, we study some basic properties of the monotone semidefinite nonlinear complementarity problem (SDCP). We show that the trajectory continuously accumulates into the solution set of the SDCP passing through the set of the infeasible but positive definite matrices under certain conditi ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
conditions. Especially, for the monotone semidefinite linear complementarity problem, the trajectory converges to an analytic center of the solution set, provided that there exists a strictly complementary solution. Finally, we propose the globally convergent infeasibleinteriorpoint algorithm for the SDCP
New Improved Error Bounds for the Linear Complementarity Problem
 Mathematical Programming
, 1994
"... New local and global error bounds are given for both nonmonotone and monotone linear complementarity problems. Comparisons of various residuals used in these error bounds are given. A possible candidate for a "best" error bound emerges from our comparisons as the sum of two natural residua ..."
Abstract

Cited by 33 (5 self)
 Add to MetaCart
New local and global error bounds are given for both nonmonotone and monotone linear complementarity problems. Comparisons of various residuals used in these error bounds are given. A possible candidate for a "best" error bound emerges from our comparisons as the sum of two natural
Robust solution of monotone stochastic linear complementarity problems
 Math. Program
"... Abstract. We consider the stochastic linear complementarity problem (SLCP) involving a random matrix whose expectation matrix is positive semidefinite. We show that the expected residual minimization (ERM) formulation of this problem has a nonempty and bounded solution set if the expected value (EV ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Abstract. We consider the stochastic linear complementarity problem (SLCP) involving a random matrix whose expectation matrix is positive semidefinite. We show that the expected residual minimization (ERM) formulation of this problem has a nonempty and bounded solution set if the expected value
Centers of Monotone Generalized Complementarity Problems
 Math. Oper. Res
, 1996
"... . Let C be a full dimensional, closed, pointed and convex cone in a finite dimensional real vector space E with an inner product hx; yi of x; y 2 E , and M a maximal monotone subset of E 2 E . This paper studies the existence and continuity of centers of the monotone generalized complementarity prob ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
and monotone semidefinite linear complementarity problems in symmetric matrices. Key words Central Trajectory, Path of Centers, Complementarity Problem, Interior Point Algorithm, Linear Program Research Report B303 on Mathematical and Computing Sciences, Department of Mathematical and Computing Sciences
Primaldual affine scaling interior point methods for linear complementarity problems
 SIAM JOURNAL ON OPTIMIZATION
"... A first order affine scaling method and two mth order affine scaling methods for solving monotone linear complementarity problems (LCP) are presented. All three methods produce iterates in a wide neighborhood of the central path. The first order method has O(nL2 (log nL2)(log log nL2)) iteration c ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
A first order affine scaling method and two mth order affine scaling methods for solving monotone linear complementarity problems (LCP) are presented. All three methods produce iterates in a wide neighborhood of the central path. The first order method has O(nL2 (log nL2)(log log nL2)) iteration
Local Convergence of InteriorPoint Algorithms for Degenerate Monotone LCP
 Computational Optimization and Applications
, 1993
"... Most asymptotic convergence analysis of interiorpoint algorithms for monotone linear complementarity problems assumes that the problem is nondegenerate, that is, the solution set contains a strictly complementary solution. We investigate the behavior of these algorithms when this assumption is remo ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
Most asymptotic convergence analysis of interiorpoint algorithms for monotone linear complementarity problems assumes that the problem is nondegenerate, that is, the solution set contains a strictly complementary solution. We investigate the behavior of these algorithms when this assumption
On a Homogeneous Algorithm for the Monotone Complementarity Problem
 Mathematical Programming
, 1995
"... We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility an ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
We present a generalization of a homogeneous selfdual linear programming (LP) algorithm to solving the monotone complementarity problem (MCP). The algorithm does not need to use any "bigM" parameter or twophase method, and it generates either a solution converging towards feasibility
Results 11  20
of
3,525