Results 1  10
of
3,525
A projection algorithm for strictly monotone linear complementarity problems. *
"... Abstract Complementary problems play a central role in equilibrium finding, physical simulation, and optimization. As a consequence, we are interested in understanding how to solve these problems quickly, and this often involves approximation. In this paper we present a method for approximately sol ..."
Abstract
 Add to MetaCart
solving strictly monotone linear complementarity problems with a Galerkin approximation. We also give bounds for the approximate error, and prove novel bounds on perturbation error. These perturbation bounds suggest that a Galerkin approximation may be much less sensitive to noise than the original LCP.
An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem
, 2007
"... Linear complementarity problem noted (LCP) becames in present the subject of many reseach interest because it arises in many areas and it includes the two important domains in optimization:the linear programming (LP) and the convex quadratic (CQP) programming. So the researchers aims to extend the ..."
Abstract
 Add to MetaCart
the results obtained in (LP) and (CQP) to (LCP). Differents classes of methods are proposed to solve (LCP) inspired from (LP) and (CQP). In this paper, we present an infeasible interior point method to solve the monotone linear complementarity problem. Comparative results of this method with feasible interior
Convergence of Interior Point Algorithms for the Monotone Linear Complementarity Problem
, 1994
"... The literature on interior point algorithms shows impressive results related to the speed of convergence of the objective values, but very little is known about the convergence of the iterate sequences. This paper studies the horizontal linear complementarity problem, and derives general convergence ..."
Abstract

Cited by 24 (4 self)
 Add to MetaCart
The literature on interior point algorithms shows impressive results related to the speed of convergence of the objective values, but very little is known about the convergence of the iterate sequences. This paper studies the horizontal linear complementarity problem, and derives general
An Application Of Carver's Theorem To Monotone Linear Complementarity Problems
"... h is sufficient for the boundedness of the solution set F , see Mangasarian [3]. Corollary 3 in Ye [6] states that the existence of such x and s is also necessary in the case of monotone LCPs with a socalled negative qvalue. To see that it is necessary in general, suppose that there exist no ..."
Abstract
 Add to MetaCart
h is sufficient for the boundedness of the solution set F , see Mangasarian [3]. Corollary 3 in Ye [6] states that the existence of such x and s is also necessary in the case of monotone LCPs with a socalled negative qvalue. To see that it is necessary in general, suppose that there exist
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 788 (30 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
Robust wide baseline stereo from maximally stable extremal regions
 In Proc. BMVC
, 2002
"... The widebaseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desir ..."
Abstract

Cited by 1016 (35 self)
 Add to MetaCart
sirable properties: the set is closed under 1. continuous (and thus projective) transformation of image coordinates and 2. monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinelyinvariant stable
The PATH Solver: A NonMonotone Stabilization Scheme for Mixed Complementarity Problems
 OPTIMIZATION METHODS AND SOFTWARE
, 1995
"... The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length acceptan ..."
Abstract

Cited by 213 (40 self)
 Add to MetaCart
The Path solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem. The stabilization scheme employs a pathgeneration procedure which is used to construct a piecewiselinear path from the current point to the Newton point; a step length
Results 1  10
of
3,525