Results 11  20
of
1,512,910
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
simultaneously on multiple computers, or on multiple CPU cores within a computer. The application can discover the size and placement of data at run time, and modify the graph as the computation progresses to make efficient use of the available resources. Dryad is designed to scale from powerful multicore sin
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1707 (58 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
. With this algorithm, fairing very large surfaces, such as those obtained from volumetric medical data, becomes affordable. By combining this algorithm with surface subdivision methods we obtain a very effective fair surface design technique. We then extend the analysis, and modify the algorithm accordingly
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue.
RealTime Dynamic Voltage Scaling for LowPower Embedded Operating Systems
, 2001
"... In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery lif ..."
Abstract

Cited by 498 (4 self)
 Add to MetaCart
importance, is largely overlooked/underdeveloped. To provide realtime guarantees, DVS must consider deadlines and periodicity of realtime tasks, requiring integration with the realtime scheduler. In this paper, we present a class of novel algorithms called realtime DVS (RTDVS) that modify the OS
The STATEMATE Semantics of Statecharts
, 1996
"... This article describes the semantics of the language of statecharts as implenented in the STATEMATE system [Harel et al. 1990; Harel and Politi 1996]. The initial version of this semantics was developed by a team about.10 years ago. With the added experience of the users of the system it has since b ..."
Abstract

Cited by 651 (12 self)
 Add to MetaCart
been extended and modified. This executable semantics has been in operation in driving the simulation, dynamic tests, and code generation tDols of STATEMATE since 1987, and a technical report describing it has been available from iLogix, Inc. since 1989. We have now decided to revise and publish
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable
The strength of weak learnability
 Machine Learning
, 1990
"... Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with h ..."
Abstract

Cited by 861 (24 self)
 Add to MetaCart
well. In addition, the construction has some interesting theoretical consequences, including a set of general upper bounds on the complexity of any strong learning algorithm as a function of the allowed error e.
The CN2 Induction Algorithm
 MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract

Cited by 884 (6 self)
 Add to MetaCart
, comprehensible production rules in domains where problems of poor description language and/or noise may be present. Implementations of the cn2, id3 and aq algorithms are compared on three medical classification tasks.
Results 11  20
of
1,512,910