Results 11  20
of
306,425
A Metrics Suite for Object Oriented Design
 IEEE Trans. Softw. Eng
, 1994
"... Given the central role that software development plays in the delivery and application of information technology, managers are increasingly focusing on process improvement in the software development area. This demand has spurred the provision of a number of new and/or improved approaches to softwar ..."
Abstract

Cited by 1079 (3 self)
 Add to MetaCart
to software development, with perhaps the most prominent being objectorientation (00). In addition, the focus on process improvement has increased the demand for software measures, or metrics with which to manage the process. The need for such metrics is particularly acute when an organization is adopting a
A HighThroughput Path Metric for MultiHop Wireless Routing
, 2003
"... This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The E ..."
Abstract

Cited by 1078 (5 self)
 Add to MetaCart
This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Text Classification from Labeled and Unlabeled Documents using EM
 MACHINE LEARNING
, 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract

Cited by 1033 (19 self)
 Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large
A linear programming formulation and approximation algorithms for the metric labeling problem
 SIAM J. Discrete Math
"... We consider approximation algorithms for the metric labeling problem. This problem was introduced in a paper by Kleinberg and Tardos [J. ACM, 49 (2002), pp. 616–630] and captures many classification problems that arise in computer vision and related fields. They gave an O(log k log log k) approximat ..."
Abstract

Cited by 43 (1 self)
 Add to MetaCart
We consider approximation algorithms for the metric labeling problem. This problem was introduced in a paper by Kleinberg and Tardos [J. ACM, 49 (2002), pp. 616–630] and captures many classification problems that arise in computer vision and related fields. They gave an O(log k log log k
An extensive empirical study of feature selection metrics for text classification
 J. of Machine Learning Research
, 2003
"... Machine learning for text classification is the cornerstone of document categorization, news filtering, document routing, and personalization. In text domains, effective feature selection is essential to make the learning task efficient and more accurate. This paper presents an empirical comparison ..."
Abstract

Cited by 483 (15 self)
 Add to MetaCart
in different situations. The results reveal that a new feature selection metric we call ‘BiNormal Separation ’ (BNS), outperformed the others by a substantial margin in most situations. This margin widened in tasks with high class skew, which is rampant in text classification problems and is particularly
Searching in metric spaces
, 2001
"... The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather gen ..."
Abstract

Cited by 432 (38 self)
 Add to MetaCart
general case where the similarity criterion defines a metric space, instead of the more restricted case of a vector space. Many solutions have been proposed in different areas, in many cases without crossknowledge. Because of this, the same ideas have been reconceived several times, and very different
Metric Labeling and Semimetric Embedding for Protein Annotation Prediction
 In Research in Computational Molecular Biology
, 2011
"... Computational techniques have been successful at predicting protein function from relational data (functional or physical interactions). These prediction techniques have been used to generate hypotheses and to direct experimental validation. With few exceptions, these predictive tasks are modeled as ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
functions can improve the quality of function prediction techniques. In this paper, we explore the use of the Metric Labeling combinatorial optimization problem to make use of heuristically computed distances between functions to make more accurate predictions of protein function in networks derived from
Roundingbased Moves for Metric Labeling M. Pawan Kumar
"... Metric labeling is a special case of energy minimization for pairwise Markov random fields. The energy function consists of arbitrary unary potentials, and pairwise potentials that are proportional to a given metric distance function over the label set. Popular methods for solving metric labeling ..."
Abstract
 Add to MetaCart
Metric labeling is a special case of energy minimization for pairwise Markov random fields. The energy function consists of arbitrary unary potentials, and pairwise potentials that are proportional to a given metric distance function over the label set. Popular methods for solving metric labeling
Roundingbased Moves for Metric Labeling M. Pawan Kumar
"... Metric labeling is a special case of energy minimization for pairwise Markov random fields. The energy function consists of arbitrary unary potentials, and pairwise potentials that are proportional to a given metric distance function over the label set. Popular methods for solving metric labeling ..."
Abstract
 Add to MetaCart
Metric labeling is a special case of energy minimization for pairwise Markov random fields. The energy function consists of arbitrary unary potentials, and pairwise potentials that are proportional to a given metric distance function over the label set. Popular methods for solving metric labeling
Results 11  20
of
306,425