• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 37,902
Next 10 →

The Hungarian method for the assignment problem

by H. W. Kuhn, Bryn Yaw - Naval Res. Logist. Quart , 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract - Cited by 1259 (0 self) - Add to MetaCart
in the work of two Hungarian mathematicians may be exploited to yield a new method of solving this problem. 1.

The information bottleneck method

by Naftali Tishby, Fernando C. Pereira, William Bialek , 1999
"... We define the relevant information in a signal x ∈ X as being the information that this signal provides about another signal y ∈ Y. Examples include the information that face images provide about the names of the people portrayed, or the information that speech sounds provide about the words spoken. ..."
Abstract - Cited by 540 (35 self) - Add to MetaCart
about Y through a ‘bottleneck ’ formed by a limited set of codewords ˜X. This constrained optimization problem can be seen as a generalization of rate distortion theory in which the distortion measure d(x, ˜x) emerges from the joint statistics of X and Y. This approach yields an exact set of self

Learning with local and global consistency.

by Dengyong Zhou , Olivier Bousquet , Thomas Navin Lal , Jason Weston , Bernhard Schölkopf - In NIPS, , 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract - Cited by 673 (21 self) - Add to MetaCart
to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

Accurate Methods for the Statistics of Surprise and Coincidence

by Ted Dunning - COMPUTATIONAL LINGUISTICS , 1993
"... Much work has been done on the statistical analysis of text. In some cases reported in the literature, inappropriate statistical methods have been used, and statistical significance of results have not been addressed. In particular, asymptotic normality assumptions have often been used unjustifiably ..."
Abstract - Cited by 1057 (1 self) - Add to MetaCart
unjustifiably, leading to flawed results.This assumption of normal distribution limits the ability to analyze rare events. Unfortunately rare events do make up a large fraction of real text.However, more applicable methods based on likelihood ratio tests are available that yield good results with relatively

Estimating standard errors in finance panel data sets: comparing approaches.

by Mitchell A Petersen - Review of Financial Studies , 2009
"... Abstract In both corporate finance and asset pricing empirical work, researchers are often confronted with panel data. In these data sets, the residuals may be correlated across firms and across time, and OLS standard errors can be biased. Historically, the two literatures have used different solut ..."
Abstract - Cited by 890 (7 self) - Add to MetaCart
solutions to this problem. Corporate finance has relied on clustered standard errors, while asset pricing has used the Fama-MacBeth procedure to estimate standard errors. This paper examines the different methods used in the literature and explains when the different methods yield the same (and correct

Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods

by John C. Platt - ADVANCES IN LARGE MARGIN CLASSIFIERS , 1999
"... The output of a classifier should be a calibrated posterior probability to enable post-processing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract - Cited by 1051 (0 self) - Add to MetaCart
sigmoid versus a kernel method trained with a regularized likelihood error function. These methods are tested on three data-mining-style data sets. The SVM+sigmoid yields probabilities of comparable quality to the regularized maximum likelihood kernel method, while still retaining the sparseness

A volumetric method for building complex models from range images,”

by Brian Curless , Marc Levoy - in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, , 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract - Cited by 1020 (17 self) - Add to MetaCart
the boundaries between regions seen to be empty and regions never observed. Using this method, we are able to integrate a large number of range images (as many as 70) yielding seamless, high-detail models of up to 2.6 million triangles.

Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes

by Antony Jameson, Wolfgang Schmidt, Eli Turkel , 1981
"... A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to deter ..."
Abstract - Cited by 517 (78 self) - Add to MetaCart
A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used

Gene selection for cancer classification using support vector machines

by Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik, Nello Cristianini - Machine Learning
"... Abstract. DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must ..."
Abstract - Cited by 1115 (24 self) - Add to MetaCart
based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields

Approximating discrete probability distributions with dependence trees

by C. K. Chow, C. N. Liu - IEEE TRANSACTIONS ON INFORMATION THEORY , 1968
"... A method is presented to approximate optimally an n-dimensional discrete probability distribution by a product of second-order distributions, or the distribution of the first-order tree dependence. The problem is to find an optimum set of n-1 first order dependence relationship among the n variables ..."
Abstract - Cited by 881 (0 self) - Add to MetaCart
A method is presented to approximate optimally an n-dimensional discrete probability distribution by a product of second-order distributions, or the distribution of the first-order tree dependence. The problem is to find an optimum set of n-1 first order dependence relationship among the n
Next 10 →
Results 1 - 10 of 37,902
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University