Results 1  10
of
323,664
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 705 (17 self)
 Add to MetaCart
processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 539 (20 self)
 Add to MetaCart
toimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc
Superconformal field theory on threebranes at a CalabiYau singularity
 Nucl. Phys. B
, 1998
"... Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that ..."
Abstract

Cited by 690 (37 self)
 Add to MetaCart
Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A
Indexing by latent semantic analysis
 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
, 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higherorder structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract

Cited by 3723 (35 self)
 Add to MetaCart
. The particular technique used is singularvalue decomposition, in which a large term by document matrix is decomposed into a set of ca. 100 orthogonal factors from which the original matrix can be approximated by linear combination. Documents are represented by ca. 100 item vectors of factor weights. Queries
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 766 (23 self)
 Add to MetaCart
, the nonsymmetric eigenvalue problem, and the singular value decomposition. We consider dense, band and sparse matrices.
Shape and motion from image streams under orthography: a factorization method
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an illconditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract

Cited by 1090 (39 self)
 Add to MetaCart
uses the singularvalue decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and Kmeans clu ..."
Abstract

Cited by 476 (26 self)
 Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K
Results 1  10
of
323,664