Results 1 - 10
of
25,965
A classification of schema-based matching approaches
- JOURNAL ON DATA SEMANTICS
, 2005
"... Schema/ontology matching is a critical problem in many application domains, such as, semantic web, schema/ontology integration, data warehouses, e-commerce, catalog matching, etc. Many diverse solutions to the matching problem have been proposed so far. In this paper we present a taxonomy of schema- ..."
Abstract
-
Cited by 386 (21 self)
- Add to MetaCart
-based matching techniques that builds on the previous work on classifying schema matching approaches. Some innovations are in introducing new criteria which distinguish between matching techniques relying on diverse semantic clues. In particular, we distinguish between heuristic and formal techniques
COMA - A system for flexible combination of Schema Matching Approaches
- In VLDB
, 2002
"... Schema matching is the task of finding semantic correspondences between elements of two schemas. It is needed in many database applications, such as integration of web data sources, data warehouse loading and XML message mapping. To reduce the amount of user effort as much as possible, automati ..."
Abstract
-
Cited by 443 (12 self)
- Add to MetaCart
, automatic approaches combining several match techniques are required. While such match approaches have found considerable interest recently, the problem of how to best combine different match algorithms still requires further work. We have thus developed the COMA schema matching system as a platform
A Survey of Approaches to Automatic Schema Matching
- VLDB JOURNAL
, 2001
"... Schema matching is a basic problem in many database application domains, such as data integration, E-business, data warehousing, and semantic query processing. In current implementations, schema matching is typically performed manually, which has significant limitations. On the other hand, previous ..."
Abstract
-
Cited by 1351 (51 self)
- Add to MetaCart
research papers have proposed many techniques to achieve a partial automation of the match operation for specific application domains. We present a taxonomy that covers many of these existing approaches, and we describe the approaches in some detail. In particular, we distinguish between schema
Generic Schema Matching with Cupid
- In The VLDB Journal
, 2001
"... Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past s ..."
Abstract
-
Cited by 604 (17 self)
- Add to MetaCart
Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past
Matching words and pictures
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto-annotation ..."
Abstract
-
Cited by 665 (40 self)
- Add to MetaCart
We present a new approach for modeling multi-modal data sets, focusing on the specific case of segmented images with associated text. Learning the joint distribution of image regions and words has many applications. We consider in detail predicting words associated with whole images (auto
Video google: A text retrieval approach to object matching in videos
- In ICCV
, 2003
"... We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, ill ..."
Abstract
-
Cited by 1636 (42 self)
- Add to MetaCart
We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint
SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract
-
Cited by 551 (35 self)
- Add to MetaCart
), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. As in other regionbased retrieval systems, an image is represented by a set of regions, roughly corresponding to objects
Shape Matching and Object Recognition Using Shape Contexts
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract
-
Cited by 1809 (21 self)
- Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning
The pyramid match kernel: Discriminative classification with sets of image features
- IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract
-
Cited by 544 (29 self)
- Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multi-resolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
Linear spatial pyramid matching using sparse coding for image classification
- in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract
-
Cited by 497 (21 self)
- Add to MetaCart
Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup
Results 1 - 10
of
25,965