• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 145,438
Next 10 →

Service Disciplines for Guaranteed Performance Service in Packet-Switching Networks

by Hui Zhang - Proceedings of the IEEE , 1995
"... While today’s computer networks support only best-effort service, future packet-switching integrated-services networks will have to support real-time communication services that allow clients to transport information with performance guarantees expressed in terms of delay, delay jitter, throughput, ..."
Abstract - Cited by 609 (4 self) - Add to MetaCart
-switching networks. We describe their mechanisms, their similarities and differences, and the performance guarantees they can provide. Various issues and tradeoffs in designing service disciplines for guaranteed performance service are discussed, and a general framework for studying and comparing these disciplines

Text Categorization with Support Vector Machines: Learning with Many Relevant Features

by Thorsten Joachims , 1998
"... This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substan ..."
Abstract - Cited by 2303 (9 self) - Add to MetaCart
substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manual parameter tuning.

From Few to many: Illumination cone models for face recognition under variable lighting and pose

by Athinodoros S. Georghiades, Peter N. Belhumeur, David J. Kriegman - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... We present a generative appearance-based method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract - Cited by 754 (12 self) - Add to MetaCart
small number of training images of each face taken with different lighting directions, the shape and albedo of the face can be reconstructed. In turn, this reconstruction serves as a generative model that can be used to render—or synthesize—images of the face under novel poses and illumination

How much should we trust differences-in-differences estimates?

by Marianne Bertrand, Esther Duflo, Sendhil Mullainathan , 2003
"... Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data on femal ..."
Abstract - Cited by 828 (1 self) - Add to MetaCart
Most papers that employ Differences-in-Differences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level data

On Sequential Monte Carlo Sampling Methods for Bayesian Filtering

by Arnaud Doucet, Simon Godsill, Christophe Andrieu - STATISTICS AND COMPUTING , 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract - Cited by 1051 (76 self) - Add to MetaCart
is developed that unifies many of the methods which have been proposed over the last few decades in several different scientific disciplines. Novel extensions to the existing methods are also proposed. We show in particular how to incorporate local linearisation methods similar to those which have previously

Intelligence without reason

by Rodney A. Brooks , 1991
"... Computers and Thought are the two categories that together define Artificial Intelligence as a discipline. It is generally accepted that work in Artificial Intelligence over the last thirty years has had a strong influence on aspects of computer architectures. In this paper we also make the converse ..."
Abstract - Cited by 930 (10 self) - Add to MetaCart
Computers and Thought are the two categories that together define Artificial Intelligence as a discipline. It is generally accepted that work in Artificial Intelligence over the last thirty years has had a strong influence on aspects of computer architectures. In this paper we also make

Power-law distributions in empirical data

by Aaron Clauset, Cosma Rohilla Shalizi, M. E. J. Newman - ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111 , 2009
"... Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract - Cited by 607 (7 self) - Add to MetaCart
demonstrate these methods by applying them to twentyfour real-world data sets from a range of different disciplines. Each of the data sets has been conjectured previously to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data while in others the power law

Complex networks: Structure and dynamics

by S. Boccaletti , V. Latora , Y. Moreno , M. Chavez , D.-U. Hwang , 2006
"... Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web, are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to capture the global properties of such systems is t ..."
Abstract - Cited by 435 (12 self) - Add to MetaCart
wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines,

Survey on Independent Component Analysis

by Aapo Hyvärinen - NEURAL COMPUTING SURVEYS , 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract - Cited by 2309 (104 self) - Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation

Choices, values and frames.

by Daniel Kahneman - American Psychologist, , 1984
"... Making decisions is like speaking prose-people do it all the time, knowingly or unknowingly. It is hardly surprising, then, that the topic of decision making is shared by many disciplines, from mathematics and statistics, through economics and political science, to sociology and psychology. The stu ..."
Abstract - Cited by 684 (9 self) - Add to MetaCart
Making decisions is like speaking prose-people do it all the time, knowingly or unknowingly. It is hardly surprising, then, that the topic of decision making is shared by many disciplines, from mathematics and statistics, through economics and political science, to sociology and psychology
Next 10 →
Results 1 - 10 of 145,438
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University