Results 1  10
of
231,108
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11972 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 527 (51 self)
 Add to MetaCart
of the wellknown clustering algorithms require input parameters which are hard to determine but have a significant influence on the clustering result. Furthermore, for many realdata sets there does not even exist a global parameter setting for which the result of the clustering algorithm describes
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 696 (8 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
Spacetime Interest Points
 IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract

Cited by 819 (21 self)
 Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 660 (8 self)
 Add to MetaCart
correspondences, which reduces the average distance between points in the two sets. Both synthetic and real data have been used to test the algorithm, and the results show that it is efficient and robust, and yields an accurate motion estimate.
Data Mining: An Overview from Database Perspective
 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
, 1996
"... Mining information and knowledge from large databases has been recognized by many researchers as a key research topic in database systems and machine learning, and by many industrial companies as an important area with an opportunity of major revenues. Researchers in many different fields have sh ..."
Abstract

Cited by 532 (26 self)
 Add to MetaCart
the business opportunities. In response to such a demand, this article is to provide a survey, from a database researcher's point of view, on the data mining techniques developed recently. A classification of the available data mining techniques is provided and a comparative study of such techniques
Surface reconstruction from unorganized points
 COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
, 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract

Cited by 815 (8 self)
 Add to MetaCart
to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching.
Text Categorization with Support Vector Machines: Learning with Many Relevant Features
, 1998
"... This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substan ..."
Abstract

Cited by 2303 (9 self)
 Add to MetaCart
This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve
Data cube: A relational aggregation operator generalizing groupby, crosstab, and subtotals
, 1996
"... Abstract. Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zerodimensional or onedimensional aggregates. Applications need the Ndimensional generalization of these op ..."
Abstract

Cited by 860 (11 self)
 Add to MetaCart
Abstract. Data analysis applications typically aggregate data across many dimensions looking for anomalies or unusual patterns. The SQL aggregate functions and the GROUP BY operator produce zerodimensional or onedimensional aggregates. Applications need the Ndimensional generalization
QSplat: A Multiresolution Point Rendering System for Large Meshes
, 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract

Cited by 502 (8 self)
 Add to MetaCart
and progressively displaying these meshes that combines a multiresolution hierarchy based on bounding spheres with a rendering system based on points. A single data structure is used for view frustum culling, backface culling, levelofdetail selection, and rendering. The representation is compact and can
Results 1  10
of
231,108