Results 1  10
of
1,326,285
Object Recognition from Local ScaleInvariant Features
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract

Cited by 2669 (13 self)
 Add to MetaCart
in multiple orientation planes and at multiple scales. The keys are used as input to a nearestneighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a lowresidual leastsquares solution for the unknown model parameters. Experimental results
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 461 (12 self)
 Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
Least Median of Squares Regression
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1984
"... ..."
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 198 (14 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 446 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Direct least Square Fitting of Ellipses
, 1998
"... This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint ..."
Abstract

Cited by 421 (3 self)
 Add to MetaCart
This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint into the normalization factor. The proposed method combines several advantages: (i) It is ellipsespecific so that even bad data will always return an ellipse; (ii) It can be solved naturally by a generalized eigensystem and (iii) it is extremely robust, efficient and easy to implement.
Gravity with Gravitas: a Solution to the Border Puzzle
, 2001
"... Gravity equations have been widely used to infer trade ow effects of various institutional arrangements. We show that estimated gravity equations do not have a theoretical foundation. This implies both that estimation suffers from omitted variables bias and that comparative statics analysis is unfo ..."
Abstract

Cited by 610 (3 self)
 Add to MetaCart
Gravity equations have been widely used to infer trade ow effects of various institutional arrangements. We show that estimated gravity equations do not have a theoretical foundation. This implies both that estimation suffers from omitted variables bias and that comparative statics analysis is unfounded. We develop a method that (i) consistently and ef ciently estimates a theoretical gravity equation and (ii) correctly calculates the comparative statics of trade frictions. We apply the method to solve the famous McCallum border puzzle. Applying our method, we nd that national borders reduce trade between industrialized countries by moderate amounts of 20–50 percent.
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 973 (4 self)
 Add to MetaCart
Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares
Results 1  10
of
1,326,285