Results 11  20
of
30,833
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 639 (15 self)
 Add to MetaCart
limitation—no spatial information is taken into account. This causes the FM model to work only on welldefined images with low levels of noise; unfortunately, this is often not the the case due to artifacts such as partial volume effect and bias field distortion. Under these conditions, FM model
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 604 (12 self)
 Add to MetaCart
with informative priors, and in the Tobitcensored regression model.
Bayesian Data Analysis
, 1995
"... I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chisquared pvalue when he wanted to check the misfit of a model to data (Gelman, Meng and Ste ..."
Abstract

Cited by 2194 (63 self)
 Add to MetaCart
the following: (1) in thinking about prior distributions, we should go beyond Jeffreys’s principles and move toward weakly informative priors; (2) it is natural for those of us who work in social and computational sciences to favor complex models, contra Jeffreys’s preference for simplicity; and (3) a key
FeatureRich PartofSpeech Tagging with a Cyclic Dependency Network
 IN PROCEEDINGS OF HLTNAACL
, 2003
"... We present a new partofspeech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective ..."
Abstract

Cited by 693 (23 self)
 Add to MetaCart
) effective use of priors in conditional loglinear models, and (iv) finegrained modeling of unknown word features. Using these ideas together, the resulting tagger gives a 97.24% accuracy on the Penn Treebank WSJ, an error reduction of 4.4% on the best previous single automatically learned tagging
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 970 (49 self)
 Add to MetaCart
very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The lowdimensional manifolds on which the digits lie are modelled by long ravines in the free
Hierarchical Dirichlet processes.
 Journal of the American Statistical Association,
, 2006
"... We consider problems involving groups of data where each observation within a group is a draw from a mixture model and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this s ..."
Abstract

Cited by 942 (78 self)
 Add to MetaCart
. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the wellknown clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given our desire to tie the mixture models in the various groups, we
Bayesian Interpolation
 NEURAL COMPUTATION
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 728 (17 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data
Bayesian density estimation and inference using mixtures.
 J. Amer. Statist. Assoc.
, 1995
"... JSTOR is a notforprofit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about J ..."
Abstract

Cited by 653 (18 self)
 Add to MetaCart
JSTOR, please contact support@jstor.org. We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from
Time Varying World Market Integration
 JOURNAL OF FINANCE
, 1995
"... We propose a measure of capital market integration arising from a conditional regimeswitching model. Our measure allows us to describe expected returns in countries that are segmented from world capital markets in one part of the sample and become integrated later in the sample. We find that a numb ..."
Abstract

Cited by 546 (40 self)
 Add to MetaCart
We propose a measure of capital market integration arising from a conditional regimeswitching model. Our measure allows us to describe expected returns in countries that are segmented from world capital markets in one part of the sample and become integrated later in the sample. We find that a
Finding structure in time
 COGNITIVE SCIENCE
, 1990
"... Time underlies many interesting human behaviors. Thus, the question of how to represent time in connectionist models is very important. One approach is to represent time implicitly by its effects on processing rather than explicitly (as in a spatial representation). The current report develops a pro ..."
Abstract

Cited by 2071 (23 self)
 Add to MetaCart
Time underlies many interesting human behaviors. Thus, the question of how to represent time in connectionist models is very important. One approach is to represent time implicitly by its effects on processing rather than explicitly (as in a spatial representation). The current report develops a
Results 11  20
of
30,833