Results 11  20
of
80,140
HUMAN POSE TRACKING IN LOW DIMENSIONAL SPACE ENHANCED BY LIMB CORRECTION
"... This paper proposes a twolevel 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low dimensi ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This paper proposes a twolevel 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low
Actions as spacetime shapes
 IN ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract

Cited by 651 (4 self)
 Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1226 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing
The geometry of graphs and some of its algorithmic applications
 COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graphtheoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract

Cited by 524 (19 self)
 Add to MetaCart
tensions. 0 For graphs embeddable in lowdimensional spaces with a small distortion, we can find lowdiameter decompositions (in the sense of [4] and [34]). The parameters of the decomposition depend only on the dimension and the distortion and not on the size of the graph. 0 In graphs embedded this way
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 852 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1277 (120 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (=150 MIPS), after learning for relatively short periods of time (a few dozen seconds)
Functional Connectivity among Spikes in Low Dimensional Space during Working Memory Task in Rat
, 2014
"... Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations o ..."
Abstract
 Add to MetaCart
of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via
A Synthetic Minority Oversampling Method Based on Local Densities in LowDimensional Space for Imbalanced Learning
"... Abstract. Imbalanced class distribution is a challenging problem in many reallife classification problems. Existing synthetic oversampling do suffer from the curse of dimensionality because they rely heavily on Euclidean distance. This paper proposed a new method, called Minority Oversampling Techn ..."
Abstract
 Add to MetaCart
Technique based on Local Densities in LowDimensional Space (or MOT2LD in short). MOT2LD first maps each training sample into a lowdimensional space, and makes clustering of their lowdimensional representations. It then assigns weight to each minority sample as the product of two quantities: local
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 783 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
The Xtree: An index structure for highdimensional data
 In Proceedings of the Int’l Conference on Very Large Data Bases
, 1996
"... In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures is the over ..."
Abstract

Cited by 592 (17 self)
 Add to MetaCart
In this paper, we propose a new method for indexing large amounts of point and spatial data in highdimensional space. An analysis shows that index structures such as the R*tree are not adequate for indexing highdimensional data sets. The major problem of Rtreebased index structures
Results 11  20
of
80,140