Results 1  10
of
30,448
On the intersection of a sparse curve and a lowdegree curve: A polynomial version of the lost theorem
, 2013
"... ..."
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 506 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
Axiomatic quantum field theory in curved spacetime
, 2008
"... The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features—such as Poincare invariance and the existence of a preferred vacuum state—that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globa ..."
Abstract

Cited by 689 (18 self)
 Add to MetaCart
and covariantly constructed from the spacetime metric), a microlocal spectrum condition, an "associativity" condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions
Design of capacityapproaching irregular lowdensity paritycheck codes
 IEEE TRANS. INFORM. THEORY
, 2001
"... We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the unde ..."
Abstract

Cited by 588 (6 self)
 Add to MetaCart
We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 574 (9 self)
 Add to MetaCart
case of beliefpropagation decoders, we provide an effective algorithm to determine the corresponding capacity to any desired degree of accuracy. The ideas presented in this paper are broadly applicable and extensions of the general method to lowdensity paritycheck codes over larger alphabets, turbo
Diversity and Multiplexing: A Fundamental Tradeoff in Multiple Antenna Channels
 IEEE Trans. Inform. Theory
, 2002
"... Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a fund ..."
Abstract

Cited by 1165 (20 self)
 Add to MetaCart
Multiple antennas can be used for increasing the amount of diversity or the number of degrees of freedom in wireless communication systems. In this paper, we propose the point of view that both types of gains can be simultaneously obtained for a given multiple antenna channel, but there is a
Spurious Regressions in Econometrics
 Journal of Econometrics
, 1974
"... It is very common to see reported in applied econometric literature time series regression equations with an apparently high degree of fit, as measured by the coefficient of multiple correlation R2 or the corrected coefficient R2, but with an extremely low value for the DurbinWatson statistic. We f ..."
Abstract

Cited by 800 (6 self)
 Add to MetaCart
It is very common to see reported in applied econometric literature time series regression equations with an apparently high degree of fit, as measured by the coefficient of multiple correlation R2 or the corrected coefficient R2, but with an extremely low value for the DurbinWatson statistic. We
Short signatures from the Weil pairing
, 2001
"... We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures ar ..."
Abstract

Cited by 755 (25 self)
 Add to MetaCart
We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 654 (15 self)
 Add to MetaCart
, or fairing, to lowpass filtering. We describe a very simple surface signal lowpass filter algorithm that applies to surfaces of arbitrary topology. As opposed to other existing optimizationbased fairing methods, which are computationally more expensive, this is a linear time and space complexity algorithm
Results 1  10
of
30,448