• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 12,403
Next 10 →

Efficient belief propagation for early vision

by Pedro F. Felzenszwalb, Daniel P. Huttenlocher - In CVPR , 2004
"... Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical u ..."
Abstract - Cited by 515 (8 self) - Add to MetaCart
Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical

Fusion, Propagation, and Structuring in Belief Networks

by Judea Pearl - ARTIFICIAL INTELLIGENCE , 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract - Cited by 484 (8 self) - Add to MetaCart
-structured), then probabilities can be updated by local propagation in an isomorphic network of parallel and autonomous processors and that the impact of new information can be imparted to all propositions in time proportional to the longest path in the network. The second part of the paper deals with the problem of finding a

Loopy belief propagation for approximate inference: An empirical study. In:

by Kevin P Murphy , Yair Weiss , Michael I Jordan - Proceedings of Uncertainty in AI, , 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" -the use of Pearl's polytree algorithm in a Bayesian network with loops -can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performanc ..."
Abstract - Cited by 676 (15 self) - Add to MetaCart
tiply connected networks: When loops are present, the network is no longer singly connected and local propaga tion schemes will invariably run into trouble . We believe there are general undiscovered theorems about the performance of belief propagation on loopy DAGs. These theo rems, which may have

A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm

by Martin Riedmiller, Heinrich Braun - IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS , 1993
"... A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive tech ..."
Abstract - Cited by 938 (34 self) - Add to MetaCart
A new learning algorithm for multilayer feedforward networks, RPROP, is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behaviour of the errorfunction. In substantial difference to other adaptive

A Fast Marching Level Set Method for Monotonically Advancing Fronts

by J. A. Sethian - PROC. NAT. ACAD. SCI , 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential eq ..."
Abstract - Cited by 630 (24 self) - Add to MetaCart
We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential

RADAR: an in-building RF-based user location and tracking system

by Paramvir Bahl, Venkata N. Padmanabhan , 2000
"... The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF) based system for locating and tracking users inside buildings. RADAR operates by recording and ..."
Abstract - Cited by 2036 (14 self) - Add to MetaCart
The proliferation of mobile computing devices and local-area wireless networks has fostered a growing interest in location-aware systems and services. In this paper we present RADAR, a radio-frequency (RF) based system for locating and tracking users inside buildings. RADAR operates by recording

The hierarchy problem and new dimensions at a millimeter

by Savas Dimopoulos, Gia Dvali, et al. , 2008
"... We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed wea ..."
Abstract - Cited by 664 (5 self) - Add to MetaCart
propagate in the new dimensions, at sub-weak energies the Standard Model (SM) fields must be localized to a 4-dimensional manifold of weak

Factor Graphs and the Sum-Product Algorithm

by Frank R. Kschischang, Brendan J. Frey, Hans-Andrea Loeliger - IEEE TRANSACTIONS ON INFORMATION THEORY , 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract - Cited by 1791 (69 self) - Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple

Content-based image retrieval at the end of the early years

by Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, Ramesh Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract - Cited by 1618 (24 self) - Add to MetaCart
for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof

Dynamic Bayesian Networks: Representation, Inference and Learning

by Kevin Patrick Murphy , 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract - Cited by 770 (3 self) - Add to MetaCart
belief propagation; a way of applying Rao-Blackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main
Next 10 →
Results 1 - 10 of 12,403
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University