Results 1 - 10
of
60,529
Interpretation as Abduction
, 1990
"... An approach to abductive inference developed in the TACITUS project has resulted in a dramatic simplification of how the problem of interpreting texts is conceptualized. Its use in solving the local pragmatics problems of reference, compound nominals, syntactic ambiguity, and metonymy is described ..."
Abstract
-
Cited by 687 (38 self)
- Add to MetaCart
An approach to abductive inference developed in the TACITUS project has resulted in a dramatic simplification of how the problem of interpreting texts is conceptualized. Its use in solving the local pragmatics problems of reference, compound nominals, syntactic ambiguity, and metonymy is described
A solution to the simultaneous localization and map building (SLAM) problem
- IEEE Transactions on Robotics and Automation
, 2001
"... Abstract—The simultaneous localization and map building (SLAM) problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle ..."
Abstract
-
Cited by 505 (30 self)
- Add to MetaCart
Abstract—The simultaneous localization and map building (SLAM) problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
- In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-base ..."
Abstract
-
Cited by 599 (10 self)
- Add to MetaCart
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter
Learning with local and global consistency.
- In NIPS,
, 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract
-
Cited by 673 (21 self)
- Add to MetaCart
Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect
Where the REALLY Hard Problems Are
- IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI-91),VOLUME 1
, 1991
"... It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract
-
Cited by 683 (1 self)
- Add to MetaCart
It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard
Local grayvalue invariants for image retrieval
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficie ..."
Abstract
-
Cited by 548 (27 self)
- Add to MetaCart
Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract
-
Cited by 839 (85 self)
- Add to MetaCart
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples
Query Expansion Using Local and Global Document Analysis
- In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, 1996
"... Automatic query expansion has long been suggested as a technique for dealing with the fundamental issue of word mismatch in information retrieval. A number of approaches to expansion have been studied and, more recently, attention has focused on techniques that analyze the corpus to discover word re ..."
Abstract
-
Cited by 610 (24 self)
- Add to MetaCart
global analysis techniques, such as word context and phrase structure, on the local set of documents produces results that are both more effective and more predictable than simple local feedback. 1 Introduction The problem of word mismatch is fundamental to information retrieval. Simply stated, it means
A New Method for Solving Hard Satisfiability Problems
- AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract
-
Cited by 730 (21 self)
- Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
The hierarchy problem and new dimensions at a millimeter
, 2008
"... We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed wea ..."
Abstract
-
Cited by 664 (5 self)
- Add to MetaCart
We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed
Results 1 - 10
of
60,529