• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 3,080,324
Next 10 →

OPTICS: Ordering Points To Identify the Clustering Structure

by Mihael Ankerst, Markus M. Breunig, Hans-peter Kriegel, Jörg Sander , 1999
"... Cluster analysis is a primary method for database mining. It is either used as a stand-alone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract - Cited by 511 (49 self) - Add to MetaCart
the intrinsic clustering structure accurately. We introduce a new algorithm for the purpose of cluster analysis which does not produce a clustering of a data set explicitly; but instead creates an augmented ordering of the database representing its density-based clustering structure. This cluster

Adaptive clustering for mobile wireless networks

by Chunhung Richard Lin, Mario Gerla - IEEE Journal on Selected Areas in Communications , 1997
"... This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract - Cited by 556 (11 self) - Add to MetaCart
This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically

Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering

by Mikhail Belkin, Partha Niyogi - Advances in Neural Information Processing Systems 14 , 2001
"... Drawing on the correspondence between the graph Laplacian, the Laplace-Beltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract - Cited by 664 (8 self) - Add to MetaCart
higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.

Locally weighted learning

by Christopher G. Atkeson, Andrew W. Moore , Stefan Schaal - ARTIFICIAL INTELLIGENCE REVIEW , 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract - Cited by 594 (53 self) - Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias

Distance Metric Learning, With Application To Clustering With Side-Information

by Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, Stuart Russell - ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15 , 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract - Cited by 799 (14 self) - Add to MetaCart
to give efficient, local-optima-free algorithms. We also demonstrate empirically that the learned metrics can be used to significantly improve clustering performance.

Model-Based Clustering, Discriminant Analysis, and Density Estimation

by Chris Fraley, Adrian E. Raftery - JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract - Cited by 557 (28 self) - Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However

On Spectral Clustering: Analysis and an algorithm

by Andrew Y. Ng, Michael I. Jordan, Yair Weiss - ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS , 2001
"... Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract - Cited by 1697 (13 self) - Add to MetaCart
Despite many empirical successes of spectral clustering methods -- algorithms that cluster points using eigenvectors of matrices derived from the distances between the points -- there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors

A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS

by Krystian Mikolajczyk, Cordelia Schmid , 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract - Cited by 1752 (53 self) - Add to MetaCart
In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how

Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections

by Douglass R. Cutting, David R. Karger, Jan O. Pedersen, John W. Tukey , 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract - Cited by 772 (12 self) - Add to MetaCart
Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably

GPFS: A Shared-Disk File System for Large Computing Clusters

by Frank Schmuck, Roger Haskin - In Proceedings of the 2002 Conference on File and Storage Technologies (FAST , 2002
"... GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community ove ..."
Abstract - Cited by 518 (3 self) - Add to MetaCart
GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community
Next 10 →
Results 1 - 10 of 3,080,324
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University