• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 25,778
Next 10 →

Efficient algorithms for processing XPath queries

by Georg Gottlob, Christoph Koch, Reinhard Pichler - In VLDB , 2002
"... Our experimental analysis of several popular XPath processors reveals a striking fact: Query evaluation in each of the systems requires time exponential in the size of queries in the worst case. We show that XPath can be processed much more efficiently, and propose main-memory algorithms for this pr ..."
Abstract - Cited by 306 (23 self) - Add to MetaCart
for this problem with polynomial-time combined query evaluation complexity. Moreover, we present two fragments of XPath for which linear-time query processing algorithms exist. 1

Tinydb: An acquisitional query processing system for sensor networks

by Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - ACM Trans. Database Syst , 2005
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 626 (8 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

Nearest neighbor queries.

by Nick Roussopoulos , Stephen Kelley , Fr Ed , Eric Vincent - ACM SIGMOD Record, , 1995
"... Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e cie ..."
Abstract - Cited by 592 (1 self) - Add to MetaCart
Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e

Query evaluation techniques for large databases

by Goetz Graefe - ACM COMPUTING SURVEYS , 1993
"... Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On ..."
Abstract - Cited by 767 (11 self) - Add to MetaCart
. On the contrary, modern data models exacerbate it: In order to manipulate large sets of complex objects as efficiently as today’s database systems manipulate simple records, query processing algorithms and software will become more complex, and a solid understanding of algorithm and architectural issues

The Cougar Approach to In-Network Query Processing in Sensor Networks

by Yong Yao, Johannes Gehrke - SIGMOD Record , 2002
"... The widespread distribution and availability of smallscale sensors, actuators, and embedded processors is transforming the physical world into a computing platform. One such example is a sensor network consisting of a large number of sensor nodes that combine physical sensing capabilities such as te ..."
Abstract - Cited by 498 (1 self) - Add to MetaCart
such as temperature, light, or seismic sensors with networking and computation capabilities. Applications range from environmental control, warehouse inventory, and health care to military environments. Existing sensor networks assume that the sensors are preprogrammed and send data to a central frontend where

The design of an acquisitional query processor for sensor networks

by Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong - In SIGMOD , 2003
"... We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acq ..."
Abstract - Cited by 523 (25 self) - Add to MetaCart
We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs

A Signal Processing Approach To Fair Surface Design

by Gabriel Taubin , 1995
"... In this paper we describe a new tool for interactive free-form fair surface design. By generalizing classical discrete Fourier analysis to two-dimensional discrete surface signals -- functions defined on polyhedral surfaces of arbitrary topology --, we reduce the problem of surface smoothing, or fai ..."
Abstract - Cited by 654 (15 self) - Add to MetaCart
, or fairing, to low-pass filtering. We describe a very simple surface signal low-pass filter algorithm that applies to surfaces of arbitrary topology. As opposed to other existing optimization-based fairing methods, which are computationally more expensive, this is a linear time and space complexity algorithm

Data Streams: Algorithms and Applications

by S. Muthukrishnan , 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract - Cited by 533 (22 self) - Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has

Relational Databases for Querying XML Documents: Limitations and Opportunities

by Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang, David DeWitt, Jeffrey Naughton , 1999
"... XML is fast emerging as the dominant standard for representing data in the World Wide Web. Sophisticated query engines that allow users to effectively tap the data stored in XML documents will be crucial to exploiting the full power of XML. While there has been a great deal of activity recently prop ..."
Abstract - Cited by 478 (9 self) - Add to MetaCart
proposing new semistructured data models and query languages for this purpose, this paper explores the more conservative approach of using traditional relational database engines for processing XML documents conforming to Document Type Descriptors (DTDs). To this end, we have developed algorithms

Marching cubes: A high resolution 3D surface construction algorithm

by William E. Lorensen, Harvey E. Cline - COMPUTER GRAPHICS , 1987
"... We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical d ..."
Abstract - Cited by 2696 (4 self) - Add to MetaCart
We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical
Next 10 →
Results 1 - 10 of 25,778
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University