Results 1  10
of
689,794
LinearSpace Approximate Distance Oracles for Planar, BoundedGenus, and MinorFree Graphs
"... Abstract. A (1 + ɛ)approximate distance oracle for a graph is a data structure that supports approximate pointtopoint shortestpathdistance queries. The relevant measures for a distanceoracle construction are: space, query time, and preprocessing time. There are strong distanceoracle construct ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Abstract. A (1 + ɛ)approximate distance oracle for a graph is a data structure that supports approximate pointtopoint shortestpathdistance queries. The relevant measures for a distanceoracle construction are: space, query time, and preprocessing time. There are strong distanceoracle
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 279 (10 self)
 Add to MetaCart
, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
is based on relative coordinates that are simply the distances from a host to some special network nodes. We propose the second mechanism, called Global Network Positioning (GNP), which is based on absolute coordinates computed from modeling the Internet as a geometric space. Since end hosts maintain
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
w.r.t the vertex set). Our graph property testing algorithms are probabilistic and make assertions which are correct with high probability, utilizing only poly(1=ffl) edgequeries into the graph, where ffl is the distance parameter. Moreover, the property testing algorithms can be used
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
From Few to many: Illumination cone models for face recognition under variable lighting and pose
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a generative appearancebased method for recognizing human faces under variation in lighting and viewpoint. Our method exploits the fact that the set of images of an object in fixed pose, but under all possible illumination conditions, is a convex cone in the space of images. Using a smal ..."
Abstract

Cited by 747 (12 self)
 Add to MetaCart
conditions. The pose space is then sampled, and for each pose the corresponding illumination cone is approximated by a lowdimensional linear subspace whose basis vectors are estimated using the generative model. Our recognition algorithm assigns to a test image the identity of the closest approximated
Finite state Markovchain approximations to univariate and vector autoregressions
 Economics Letters
, 1986
"... The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1. ..."
Abstract

Cited by 472 (0 self)
 Add to MetaCart
The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1.
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 514 (20 self)
 Add to MetaCart
wide variety of lighting conditions can be approximated accurately by a lowdimensional linear subspace, explaining prior empirical results. We also provide a simple analytic characterization of this linear space. We obtain these results by representing lighting using spherical harmonics and describing
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision f ..."
Abstract

Cited by 493 (18 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision
Results 1  10
of
689,794