Results 1  10
of
301,054
Optimal linearization trajectories for tangent linear models
"... linearization trajectories for tangent linear models ABCDEFB ..."
Chaos Generators with Piecewise Linear Trajectories
"... Novel autonomous chaos generators with piecewise linear trajectories are proposed. We consider three and four dimensional versions of the chaos generators and analyze the dynamics using mapping procedures. An simple implementation examples are also provided and its chaotic behavior is demonstrated. ..."
Abstract
 Add to MetaCart
Novel autonomous chaos generators with piecewise linear trajectories are proposed. We consider three and four dimensional versions of the chaos generators and analyze the dynamics using mapping procedures. An simple implementation examples are also provided and its chaotic behavior is demonstrated
Positioning Mobile Manipulators to Perform Constrained Linear Trajectories
 In Proc. of the IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2008. Preprint submitted to 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Received February 28
, 2009
"... Abstract — For mobile manipulators envisioned in home environments a kitchen scenario provides a challenging testbed for numerous skills. Diverse manipulation actions are required, e.g. simple pick and place for moving objects and constrained motions for opening doors and drawers. The robot kinemat ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
kinematics and link limits however are restrictive. Therefore especially a constrained trajectory will not be executable from arbitrary placements of the mobile manipulator. A two stage approach is presented to position a mobile manipulator to execute constrained linear trajectories as needed for opening
The algorithmic analysis of hybrid systems
 THEORETICAL COMPUTER SCIENCE
, 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract

Cited by 783 (76 self)
 Add to MetaCart
to dynamical laws. For verification purposes, we restrict ourselves to linear hybrid systems, where all variables follow piecewiselinear trajectories. We provide decidability and undecidability results for classes of linear hybrid systems, and we show that standard programanalysis techniques can be adapted
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract

Cited by 747 (6 self)
 Add to MetaCart
) which simply linearises all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
explained how it works. Further, traditional versions of the algorithm have had some dynamical properties that were not considered to be desirable, notably the particles’ velocities needed to be limited in order to control their trajectories. The present paper analyzes the particle’s trajectory as it moves
The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model
 Journal of neuroscience
, 1985
"... This paper presents studies of the coordination of voluntary human arm movements. A mathematical model is formulated which is shown to predict both the qualitative features and the quantitative details observed experimentally in planar, multijoint arm movements. Coordination is modeled mathematic ..."
Abstract

Cited by 663 (18 self)
 Add to MetaCart
mathematically by defining an objective function, a measure of performance for any possible movement. The unique trajectory which yields the best performance is determined using dynamic optimization theory. In the work presented here, the objective function is the square of the magnitude of jerk (rate
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Results 1  10
of
301,054