Results 1  10
of
170,703
Linear System Theory
, 1963
"... Two prototypes to categories of necessary workforce skills in five studies are related: (1) "What Work Requires of Schools " by the Secretary's Commission of Achieving Necessary Skills ..."
Abstract

Cited by 62 (0 self)
 Add to MetaCart
Two prototypes to categories of necessary workforce skills in five studies are related: (1) "What Work Requires of Schools " by the Secretary's Commission of Achieving Necessary Skills
BRIEF INTRODUCTION TO LINEAR SYSTEM THEORY
"... Abstract. The purpose of this paper is to provide the reader with basics of linear system theory. We consider a system given by ordinary differential equation of nth order. We show its transformation into the state equation ..."
Abstract
 Add to MetaCart
Abstract. The purpose of this paper is to provide the reader with basics of linear system theory. We consider a system given by ordinary differential equation of nth order. We show its transformation into the state equation
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
in the theory of adaptive systems. Some aspects of this are considered briefly.
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 907 (36 self)
 Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 568 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
Factoring wavelet transforms into lifting steps
 J. FOURIER ANAL. APPL
, 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract

Cited by 584 (8 self)
 Add to MetaCart
. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem
Authentication in distributed systems: Theory and practice
 ACM Transactions on Computer Systems
, 1992
"... ..."
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2076 (41 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Results 1  10
of
170,703