Results 1  10
of
465,646
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
as well as a large number of features N, while each example has only s << N nonzero features. This paper presents a CuttingPlane Algorithm for training linear SVMs that provably has training time O(sn) for classification problems and O(sn log(n)) for ordinal regression problems. The algorithm
Making LargeScale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 1860 (17 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 541 (21 self)
 Add to MetaCart
kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 725 (1 self)
 Add to MetaCart
global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of subproblems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract

Cited by 1424 (49 self)
 Add to MetaCart
is a reformulation of MISVM in terms of latent variables. A latent SVM is semiconvex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 628 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
A discriminatively trained, multiscale, deformable part model
 In IEEE Conference on Computer Vision and Pattern Recognition (CVPR2008
, 2008
"... This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a twofold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge ..."
Abstract

Cited by 557 (11 self)
 Add to MetaCart
training. We combine a marginsensitive approach for data mining hard negative examples with a formalism we call latent SVM. A latent SVM, like a hidden CRF, leads to a nonconvex training problem. However, a latent SVM is semiconvex and the training problem becomes convex once latent information
CuttingPlane Training of Structural SVMs
, 2007
"... Discriminative training approaches like structural SVMs have shown much promise for building highly complex and accurate models in areas like natural language processing, protein structure prediction, and information retrieval. However, current training algorithms are computationally expensive or i ..."
Abstract

Cited by 321 (10 self)
 Add to MetaCart
or intractable on large datasets. To overcome this bottleneck, this paper explores how cuttingplane methods can provide fast training not only for classification SVMs, but also for structural SVMs. In particular, we show that in an equivalent “1slack” reformulation of the linear SVM training problem, our
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1861 (43 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Sequential minimal optimization: A fast algorithm for training support vector machines
 Advances in Kernel MethodsSupport Vector Learning
, 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract

Cited by 462 (3 self)
 Add to MetaCart
is avoided, SMO scales somewhere between linear and quadratic in the training set size for various test problems, while the standard chunking SVM algorithm scales somewhere between linear and cubic in the training set size. SMO’s computation time is dominated by SVM evaluation, hence SMO is fastest
Results 1  10
of
465,646