• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 106,063
Next 10 →

Bagging predictors

by LEO BREIMAN , 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract - Cited by 3650 (1 self) - Add to MetaCart
by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability

Projection Pursuit Regression

by Jerome H. Friedman, Werner Stuetzle - Journal of the American Statistical Association , 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract - Cited by 550 (6 self) - Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures

Least angle regression

by Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani , 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract - Cited by 1326 (37 self) - Add to MetaCart
modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained

Training Linear SVMs in Linear Time

by Thorsten Joachims , 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for high-dimensional sparse data commonly encountered in applications like text classification, word-sense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract - Cited by 549 (6 self) - Add to MetaCart
as well as a large number of features N, while each example has only s << N non-zero features. This paper presents a Cutting-Plane Algorithm for training linear SVMs that provably has training time O(sn) for classification problems and O(sn log(n)) for ordinal regression problems. The algorithm

Regression Shrinkage and Selection Via the Lasso

by Robert Tibshirani - JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B , 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract - Cited by 4212 (49 self) - Add to MetaCart
We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients

Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models

by C. J. Leggetter, P. C. Woodland , 1995
"... ..."
Abstract - Cited by 818 (7 self) - Add to MetaCart
Abstract not found

Linear pattern matching algorithms

by Peter Weiner - IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE , 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear ti ..."
Abstract - Cited by 546 (0 self) - Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but sub-optimal algorithms. In this paper, we introduce an interesting data structure called a bi-tree. A linear

Parallel Numerical Linear Algebra

by James W. Demmel, Michael T. Heath , Henk A. van der Vorst , 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract - Cited by 773 (23 self) - Add to MetaCart
illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem

Additive Logistic Regression: a Statistical View of Boosting

by Jerome Friedman, Trevor Hastie, Robert Tibshirani - Annals of Statistics , 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract - Cited by 1750 (25 self) - Add to MetaCart
data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the two-class problem, boosting can

Lambertian Reflectance and Linear Subspaces

by Ronen Basri, David Jacobs , 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract - Cited by 526 (20 self) - Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce non-negative lighting functions. Finally, we show a simple way to enforce non
Next 10 →
Results 1 - 10 of 106,063
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University