Results 1  10
of
23,607
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
 ACOUSTICS, SPEECH AND SIGNAL PROCESSING, IEEE TRANSACTIONS ON
, 1980
"... Several parametric representations of the acoustic signal were compared as to word recognition performance in a syllableoriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on ability to retain phonetically ..."
Abstract

Cited by 1120 (2 self)
 Add to MetaCart
phonetically significant acoustic information in the face of syntactic and duration variations. For each ~ arameter set (based on a melfrequency cepstrum, a linear frequency cepstrum, a linear prediction cepstrum, a linear prediction spectrum, or a set of reflection coefficients), word templates were
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary statistics. The variance equation is closely related to the Hamiltonian (canonical) differential equations of the calculus of variations. Analytic solutions are available in some cases. The significance of the variance equation is illustrated by examples which duplicate, simplify, or extend earlier results in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed sidebyside. Properties of the variance equation are of great interest in the theory of adaptive systems. Some aspects of this are considered briefly.
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 738 (16 self)
 Add to MetaCart
important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear
Predicting the Semantic Orientation of Adjectives
, 1997
"... We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev ..."
Abstract

Cited by 473 (5 self)
 Add to MetaCart
We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev
Bagging predictors
, 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract

Cited by 3650 (1 self)
 Add to MetaCart
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 599 (51 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Sparse coding with an overcomplete basis set: a strategy employed by V1
 Vision Research
, 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract

Cited by 958 (9 self)
 Add to MetaCart
for representing a given input, and so the inputoutput function will deviate from being purely linear. These deviations from linearity provide a potential explanation for the weak forms of nonlinearity observed in the response properties of cortical simple cells, and they further make predictions about
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vect ..."
Abstract

Cited by 966 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classification tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 736 (22 self)
 Add to MetaCart
is a computationally attractive alternative to standard covariance selection for sparse highdimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We
Least angle regression
, 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1326 (37 self)
 Add to MetaCart
The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope
Results 1  10
of
23,607