Results 1  10
of
1,494,431
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
Depth first search and linear graph algorithms
 SIAM JOURNAL ON COMPUTING
, 1972
"... The value of depthfirst search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and ar algorithm for finding the biconnected components of an undirect ..."
Abstract

Cited by 1406 (19 self)
 Add to MetaCart
of an undirect graph are presented. The space and time requirements of both algorithms are bounded by k 1V + k2E d k for some constants kl, k2, and k a, where Vis the number of vertices and E is the number of edges of the graph being examined.
A LinearTime Heuristic for Improving Network Partitions
, 1982
"... An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To d ..."
Abstract

Cited by 524 (0 self)
 Add to MetaCart
An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
 Stat. Appl. Genet. Mol. Biol.
, 2004
"... Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated twocolor experiment using a simple hierarchical parametric model. ..."
Abstract

Cited by 1321 (24 self)
 Add to MetaCart
. The purpose of this paper is to develop the hierarchical model of Lonnstedt and Speed (2002) into a practical approach for general microarray experiments with arbitrary numbers of treatments and RNA samples. The model is reset in the context of general linear models with arbitrary coefficients and contrasts
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugate
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 502 (1 self)
 Add to MetaCart
null distribution. Some theory is developed for the proposal and a simulation study that shows that the Gap statistic usually outperforms other methods that have been proposed in the literature. We also briey explore application of the same technique to the problem for estimating the number of linear
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 497 (21 self)
 Add to MetaCart
reduces the complexity of SVMs to O(n) in training and a constant in testing. In a number of image categorization experiments, we find that, in terms of classification accuracy, the suggested linear SPM based on sparse coding of SIFT descriptors always significantly outperforms the linear SPM kernel
Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm
 Machine Learning
, 1988
"... learning Boolean functions, linearthreshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each ex ..."
Abstract

Cited by 773 (5 self)
 Add to MetaCart
be expressed as a linearthreshold algorithm. A primary advantage of this algorithm is that the number of mistakes grows only logarithmically with the number of irrelevant attributes in the examples. At the same time, the algorithm is computationally efficient in both time and space. 1.
On the Linear Number of Matching Substrings
"... Abstract: We study the number of matching substrings in the pattern matching problem. In general, there can be a quadratic number of matching substrings in the size of a given text. The linearizing restriction enables to find at most a linear number of matching substrings. We first explore two well ..."
Abstract
 Add to MetaCart
Abstract: We study the number of matching substrings in the pattern matching problem. In general, there can be a quadratic number of matching substrings in the size of a given text. The linearizing restriction enables to find at most a linear number of matching substrings. We first explore two
Results 1  10
of
1,494,431