Results 1  10
of
2,275,615
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 515 (20 self)
 Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce nonnegative lighting functions. Finally, we show a simple way to enforce non
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 539 (6 self)
 Add to MetaCart
Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract

Cited by 528 (0 self)
 Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.
Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
 STAT. APPL. GENET. MOL. BIOL
, 2004
"... ..."
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 598 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Pointsto Analysis in Almost Linear Time
, 1996
"... We present an interprocedural flowinsensitive pointsto analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest nontrivial interprocedural pointsto analysis algorithm yet described. The algorithm is based on a nons ..."
Abstract

Cited by 592 (3 self)
 Add to MetaCart
We present an interprocedural flowinsensitive pointsto analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest nontrivial interprocedural pointsto analysis algorithm yet described. The algorithm is based on a non
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 645 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2041 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 698 (14 self)
 Add to MetaCart
We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the
Results 1  10
of
2,275,615