• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 42,533
Next 10 →

Longitudinal data analysis using generalized linear models”.

by Kung-Yee Liang , Scott L Zeger - Biometrika, , 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract - Cited by 1526 (8 self) - Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence

A Linear-Time Heuristic for Improving Network Partitions

by C. M. Fiduccia, et al. , 1982
"... An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To d ..."
Abstract - Cited by 524 (0 self) - Add to MetaCart
An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning

New results in linear filtering and prediction theory

by R. E. Kalman, R. S. Bucy - TRANS. ASME, SER. D, J. BASIC ENG , 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract - Cited by 607 (0 self) - Add to MetaCart
statistics. The variance equation is closely related to the Hamiltonian (canonical) differential equations of the calculus of variations. Analytic solutions are available in some cases. The significance of the variance equation is illustrated by examples which duplicate, simplify, or extend earlier results

A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR PROGRAMMING

by N. Karmarkar - COMBINATORICA , 1984
"... We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract - Cited by 860 (3 self) - Add to MetaCart
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than

Maximum Likelihood Linear Transformations for HMM-Based Speech Recognition

by M.J.F. Gales - COMPUTER SPEECH AND LANGUAGE , 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMM-based speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract - Cited by 570 (68 self) - Add to MetaCart
bias, strict linear feature-space transformations are inappropriate in this case. Hence, only model-based linear transforms are considered. The paper compares the two possible forms of model-based transforms: (i) unconstrained, where any combination of mean and variance transform may be used, and (ii

Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”

by Benjamin Recht , Maryam Fazel , Pablo A Parrilo - SIAM Review, , 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract - Cited by 562 (20 self) - Add to MetaCart
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding

Support-Vector Networks

by Corinna Cortes, Vladimir Vapnik - Machine Learning , 1995
"... The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special pr ..."
Abstract - Cited by 3703 (35 self) - Add to MetaCart
The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special

Pegasos: Primal Estimated sub-gradient solver for SVM

by Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, Andrew Cotter
"... We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract - Cited by 542 (20 self) - Add to MetaCart
kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an order-of-magnitude speedup over previous SVM learning

Sparse coding with an overcomplete basis set: a strategy employed by V1

by Bruno A. Olshausen, David J. Fieldt - Vision Research , 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract - Cited by 958 (9 self) - Add to MetaCart
is the case when the code is overcomplete--i.e., when the number of code elements is greater than the effective dimensionality of the input space. Because the basis functions are non-orthogonal and not linearly independent of each other, sparsifying the code will recruit only those basis functions necessary

Optimally sparse representation in general (non-orthogonal) dictionaries via ℓ¹ minimization

by David L. Donoho, Michael Elad - PROC. NATL ACAD. SCI. USA 100 2197–202 , 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract - Cited by 633 (38 self) - Add to MetaCart
Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work
Next 10 →
Results 1 - 10 of 42,533
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University