Results 1  10
of
1,221
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 989 (4 self)
 Add to MetaCart
Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares
Distinctive Image Features from ScaleInvariant Keypoints
, 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract

Cited by 8955 (21 self)
 Add to MetaCart
, and finally performing verification through leastsquares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near realtime performance.
Object Recognition from Local ScaleInvariant Features
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract

Cited by 2739 (13 self)
 Add to MetaCart
in multiple orientation planes and at multiple scales. The keys are used as input to a nearestneighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a lowresidual leastsquares solution for the unknown model parameters. Experimental results
Probing the Pareto frontier for basis pursuit solutions
, 2008
"... The basis pursuit problem seeks a minimum onenorm solution of an underdetermined leastsquares problem. Basis pursuit denoise (BPDN) fits the leastsquares problem only approximately, and a single parameter determines a curve that traces the optimal tradeoff between the leastsquares fit and the ..."
Abstract

Cited by 365 (5 self)
 Add to MetaCart
The basis pursuit problem seeks a minimum onenorm solution of an underdetermined leastsquares problem. Basis pursuit denoise (BPDN) fits the leastsquares problem only approximately, and a single parameter determines a curve that traces the optimal tradeoff between the leastsquares fit
Multigrid thirdorder leastsquares solution of CauchyRiemann equations on unstructured triangular grids
 International Journal for Numerical Methods in Fluids
"... In this paper, a multigrid algorithm is developed for the thirdorder accurate solution of CauchyRiemann equations discretized in the cellvertex finitevolume fashion: the solution values stored at vertices and the residuals defined on triangular elements. On triangular grids, this results in a hi ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
highly overdetermined problem, and therefore we consider its solution that minimizes the residuals in the leastsquares norm. The standard secondorder leastsquares scheme is extended to thirdorder by adding a highorder correction term in the residual. The resulting highorder method is shown to give
Robust Solutions To LeastSquares Problems With Uncertain Data
, 1997
"... . We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpret ..."
Abstract

Cited by 205 (14 self)
 Add to MetaCart
. We consider leastsquares problems where the coefficient matrices A; b are unknownbutbounded. We minimize the worstcase residual error using (convex) secondorder cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 274 (22 self)
 Add to MetaCart
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our
Regularized LeastSquares Classification
"... We consider the solution of binary classification problems via Tikhonov regularization in a Reproducing Kernel Hilbert Space using the square loss, and denote the resulting algorithm Regularized LeastSquares Classification (RLSC). We sketch ..."
Abstract

Cited by 103 (1 self)
 Add to MetaCart
We consider the solution of binary classification problems via Tikhonov regularization in a Reproducing Kernel Hilbert Space using the square loss, and denote the resulting algorithm Regularized LeastSquares Classification (RLSC). We sketch
A scheme for robust distributed sensor fusion based on average consensus
 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN
, 2005
"... We consider a network of distributed sensors, where each sensor takes a linear measurement of some unknown parameters, corrupted by independent Gaussian noises. We propose a simple distributed iterative scheme, based on distributed average consensus in the network, to compute the maximumlikelihoo ..."
Abstract

Cited by 257 (3 self)
 Add to MetaCart
compute a local weighted leastsquares estimate, which converges to the global maximumlikelihood solution. This scheme is robust to unreliable communication links. We show that it works in a network with dynamically changing topology, provided that the infinitely occurring communication graphs
Overview of total leastsquares methods
 SIGNAL PROCESSING
, 2007
"... We review the development and extensions of the classical total least squares method and describe algorithms for its generalization to weighted and structured approximation problems. In the generic case, the classical total least squares problem has a unique solution, which is given in analytic form ..."
Abstract

Cited by 70 (9 self)
 Add to MetaCart
We review the development and extensions of the classical total least squares method and describe algorithms for its generalization to weighted and structured approximation problems. In the generic case, the classical total least squares problem has a unique solution, which is given in analytic
Results 1  10
of
1,221