Results 1 - 10
of
12,229
Connectionist Learning Procedures
- ARTIFICIAL INTELLIGENCE
, 1989
"... A major goal of research on networks of neuron-like processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way ..."
Abstract
-
Cited by 410 (9 self)
- Add to MetaCart
A major goal of research on networks of neuron-like processing units is to discover efficient learning procedures that allow these networks to construct complex internal representations of their environment. The learning procedures must be capable of modifying the connection strengths in such a way
Learning probabilistic relational models
- In IJCAI
, 1999
"... A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract
-
Cited by 613 (30 self)
- Add to MetaCart
of the dependency structure in a model. Moreover, we show how the learning procedure can exploit standard database retrieval techniques for efficient learning from large datasets. We present experimental results on both real and synthetic relational databases. 1
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract
-
Cited by 647 (82 self)
- Add to MetaCart
solution construction mechanisms and techniques to speed up the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss in detail implementation strategies of memory
Learning to predict by the methods of temporal differences
- MACHINE LEARNING
, 1988
"... This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between predi ..."
Abstract
-
Cited by 1521 (56 self)
- Add to MetaCart
This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between
Some studies in machine learning using the game of Checkers
- IBM JOURNAL OF RESEARCH AND DEVELOPMENT
, 1959
"... Two machine-learning procedures have been investigated in some detail using the game of checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will learn to play a better game of checkers than can be played by the person who wrote the program. Furthermor ..."
Abstract
-
Cited by 780 (0 self)
- Add to MetaCart
Two machine-learning procedures have been investigated in some detail using the game of checkers. Enough work has been done to verify the fact that a computer can be programmed so that it will learn to play a better game of checkers than can be played by the person who wrote the program
A fast learning algorithm for deep belief nets
- Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in densely-connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract
-
Cited by 970 (49 self)
- Add to MetaCart
at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a
Learnability in Optimality Theory
, 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract
-
Cited by 529 (35 self)
- Add to MetaCart
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given
Ant Colony System: A cooperative learning approach to the traveling salesman problem
- IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract
-
Cited by 1029 (53 self)
- Add to MetaCart
ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSP’s.
The Collective Learning Procedure
"... This paper proposes the collective learning procedure. Collective learning uses a genetic algorithm to quickly sample the search space and allows each individual to perform local optimization steps. This hybrid scheme yields very good performance in the field of continuous parameter optimization and ..."
Abstract
- Add to MetaCart
This paper proposes the collective learning procedure. Collective learning uses a genetic algorithm to quickly sample the search space and allows each individual to perform local optimization steps. This hybrid scheme yields very good performance in the field of continuous parameter optimization
Transfer of Cognitive Skill
, 1989
"... A framework for skill acquisition is proposed that includes two major stages in the development of a cognitive skill: a declarative stage in which facts about the skill domain are interpreted and a procedural stage in which the domain knowledge is directly embodied in procedures for performing the s ..."
Abstract
-
Cited by 894 (22 self)
- Add to MetaCart
of the subprocesses of composition, which collapses sequences of productions into single productions, and proceduralization, which embeds factual knowledge into productions. Once proceduralized, further learning processes operate on the skill to make the productions more selective in their range of applications
Results 1 - 10
of
12,229