Results 21  30
of
95,286
A Spatial Logic based on Regions and Connection
 PROCEEDINGS 3RD INTERNATIONAL CONFERENCE ON KNOWLEDGE REPRESENTATION AND REASONING
, 1992
"... We describe an interval logic for reasoning about space. The logic simplifies an earlier theory developed by Randell and Cohn, and that of Clarke upon which the former was based. The theory supports a simpler ontology, has fewer defined functions and relations, yet does not suffer in terms of its us ..."
Abstract

Cited by 736 (32 self)
 Add to MetaCart
We describe an interval logic for reasoning about space. The logic simplifies an earlier theory developed by Randell and Cohn, and that of Clarke upon which the former was based. The theory supports a simpler ontology, has fewer defined functions and relations, yet does not suffer in terms of its useful expressiveness. An axiomatisation of the new theory and a comparison with the two original theories is given.
A survey of generalpurpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract

Cited by 545 (18 self)
 Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the latest research in mapping generalpurpose computation to graphics hardware. We begin with the technical motivations that underlie generalpurpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim the main body of this report at two separate audiences. First, we describe the techniques used in mapping generalpurpose computation to graphics hardware. We believe these techniques will be generally useful for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey and categorize the latest developments in generalpurpose application development on graphics hardware.
An intrusiondetection model
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 1987
"... A model of a realtime intrusiondetection expert system capable of detecting breakins, penetrations, and other forms of computer abuse is described. The model is based on the hypothesis that security violations can be detected by monitoring a system's audit records for abnormal patterns of sy ..."
Abstract

Cited by 632 (0 self)
 Add to MetaCart
A model of a realtime intrusiondetection expert system capable of detecting breakins, penetrations, and other forms of computer abuse is described. The model is based on the hypothesis that security violations can be detected by monitoring a system's audit records for abnormal patterns of system usage. The model includes profiles for representing the behavior of subjects with respect to objects in terms of metrics and statistical models, and rules for acquiring knowledge about this behavior from audit records and for detecting anomalous behavior. The model is independent of any particular system, application environment, system vulnerability, or type of intrusion, thereby providing a framework for a generalpurpose intrusiondetection expert system.
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling in low and high level computer vision. The unification is made possible due to a recent advance in MRF modeling for high level object recognition. Such unification provides a systematic approach for vision modeling based on sound mathematical principles. 1 Introduction Since its beginning in early 1960's, computer vision research has been evolving from heuristic design of algorithms to syste...
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limitation—no spatial information is taken into account. This causes the FM model to work only on welldefined images with low levels of noise; unfortunately, this is often not the the case due to artifacts such as partial volume effect and bias field distortion. Under these conditions, FM modelbased methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown that the FM model is a degenerate version of the HMRF model. The advantage of the HMRF model derives from the way in which the spatial information is encoded through the mutual influences of neighboring sites. Although MRF modeling has been employed in MR image segmentation by other researchers, most reported methods are limited to using MRF as a general prior in an FM modelbased approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRFEM framework, an accurate and robust segmentation can be achieved. More importantly, the HMRFEM framework can easily be combined with other techniques. As an example, we show how the bias field correction algorithm of Guillemaud and Brady (1997) can be incorporated into this framework to achieve a threedimensional fully automated approach for brain MR image segmentation.
Results 21  30
of
95,286