Results 1 - 10
of
23,182
Domain Adaptation by Constraining Inter-Domain Variability of Latent Feature Representation
"... We consider a semi-supervised setting for domain adaptation where only unlabeled data is available for the target domain. One way to tackle this problem is to train a generative model with latent variables on the mixture of data from the source and target domains. Such a model would cluster features ..."
Abstract
-
Cited by 3 (1 self)
- Add to MetaCart
features in both domains and ensure that at least some of the latent variables are predictive of the label on the source domain. The danger is that these predictive clusters will consist of features specific to the source domain only and, consequently, a classifier relying on such clusters would perform
Latent dirichlet allocation
- Journal of Machine Learning Research
, 2003
"... We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, ..."
Abstract
-
Cited by 4365 (92 self)
- Add to MetaCart
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
- PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract
-
Cited by 1816 (10 self)
- Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis
Features of similarity.
- Psychological Review
, 1977
"... Similarity plays a fundamental role in theories of knowledge and behavior. It serves as an organizing principle by which individuals classify objects, form concepts, and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological theory. It underlies the accounts of stimu ..."
Abstract
-
Cited by 1455 (2 self)
- Add to MetaCart
and metric assumptions are open to question. It has been argued by many authors that dimensional representations are appropriate for certain stimuli (e.g., colors, tones) but not for others. It seems more appropriate to represent faces, countries, or personalities in terms of many qualitative features than
Robust face recognition via sparse representation
- IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2008
"... We consider the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise. We cast the recognition problem as one of classifying among multiple linear regression models, and argue that new theory from sparse signa ..."
Abstract
-
Cited by 936 (40 self)
- Add to MetaCart
signal representation offers the key to addressing this problem. Based on a sparse representation computed by ℓ 1-minimization, we propose a general classification algorithm for (image-based) object recognition. This new framework provides new insights into two crucial issues in face recognition: feature
Feature detection with automatic scale selection
- International Journal of Computer Vision
, 1998
"... The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works ..."
Abstract
-
Cited by 723 (34 self)
- Add to MetaCart
works, Witkin (1983) and Koenderink (1984) proposed to approach this problem by representing image structures at different scales in a so-called scale-space representation. Traditional scale-space theory building on this work, however, does not address the problem of how to select local appropriate
PCA-SIFT: A more distinctive representation for local image descriptors
, 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract
-
Cited by 591 (6 self)
- Add to MetaCart
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network
- IN PROCEEDINGS OF HLT-NAACL
, 2003
"... We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective ..."
Abstract
-
Cited by 693 (23 self)
- Add to MetaCart
We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii
K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract
-
Cited by 935 (41 self)
- Add to MetaCart
In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
- In CVPR
"... This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting “spatial pyrami ..."
Abstract
-
Cited by 1923 (47 self)
- Add to MetaCart
pyramid ” is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database
Results 1 - 10
of
23,182