• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 90,908
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

The tradeoffs of large scale learning

by Léon Bottou, Olivier Bousquet - IN: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 20 , 2008
"... This contribution develops a theoretical framework that takes into account the effect of approximate optimization on learning algorithms. The analysis shows distinct tradeoffs for the case of small-scale and large-scale learning problems. Small-scale learning problems are subject to the usual approx ..."
Abstract - Cited by 270 (4 self) - Add to MetaCart
This contribution develops a theoretical framework that takes into account the effect of approximate optimization on learning algorithms. The analysis shows distinct tradeoffs for the case of small-scale and large-scale learning problems. Small-scale learning problems are subject to the usual

Making Large-Scale SVM Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 1861 (17 self) - Add to MetaCart
learning tasks with many training examples, off-the-shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic

Making Large-Scale Support Vector Machine Learning Practical

by Thorsten Joachims , 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract - Cited by 628 (1 self) - Add to MetaCart
learning tasks with many training examples, off-the-shelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SVM light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents

Large-scale machine learning with stochastic gradient descent

by Léon Bottou - in COMPSTAT , 2010
"... Abstract. During the last decade, the data sizes have grown faster than the speed of processors. In this context, the capabilities of statistical machine learning methods is limited by the computing time rather than the sample size. A more precise analysis uncovers qualitatively different tradeoffs ..."
Abstract - Cited by 163 (1 self) - Add to MetaCart
for the case of small-scale and large-scale learning problems. The large-scale case involves the computational complexity of the underlying optimization algorithm in non-trivial ways. Unlikely optimization algorithms such as stochastic gradient descent show amazing performance for large-scale problems

SNOPT: An SQP Algorithm For Large-Scale Constrained Optimization

by Philip E. Gill, Walter Murray, Michael A. Saunders , 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract - Cited by 597 (24 self) - Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first

Imagenet: A large-scale hierarchical image database

by Jia Deng, Wei Dong, Richard Socher, Li-jia Li, Kai Li, Li Fei-fei - In CVPR , 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract - Cited by 840 (28 self) - Add to MetaCart
datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We

Pregel: A system for large-scale graph processing

by Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski - IN SIGMOD , 2010
"... Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational model ..."
Abstract - Cited by 496 (0 self) - Add to MetaCart
Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs—in some cases billions of vertices, trillions of edges—poses challenges to their efficient processing. In this paper we present a computational

The anatomy of a large-scale hypertextual web search engine.

by Sergey Brin , Lawrence Page - Comput. Netw. ISDN Syst., , 1998
"... Abstract In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext. Google is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems. The prototype with a fu ..."
Abstract - Cited by 4673 (5 self) - Add to MetaCart
an in-depth description of our large-scale web search engine --the first such detailed public description we know of to date. Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical challenges involved with using the additional information

Learning in graphical models

by Michael I. Jordan - STATISTICAL SCIENCE , 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve large-scale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract - Cited by 806 (10 self) - Add to MetaCart
for approaching these problems, and indeed many of the models developed by researchers in these applied fields are instances of the general graphical model formalism. We review some of the basic ideas underlying graphical models, including the algorithmic ideas that allow graphical models to be deployed in large-scale
Next 10 →
Results 1 - 10 of 90,908
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University