Results 1  10
of
82,352
Embedding large subgraphs into dense graphs
, 2009
"... What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac’s theorem on Hamilton cycles and Tutte’s theorem on perfect matchings. Perfect matchings are generalized by perfect Fpackings, where instead of covering ..."
Abstract

Cited by 34 (11 self)
 Add to MetaCart
What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac’s theorem on Hamilton cycles and Tutte’s theorem on perfect matchings. Perfect matchings are generalized by perfect Fpackings, where instead
Large subgraphs without short cycles
, 2014
"... We study two extremal problems about subgraphs excluding a family F of fixed graphs. i) Among all graphs with m edges, what is the smallest size f(m, F) of a largest F–free subgraph? ii) Among all graphs with minimum degree δ and maximum degree ∆, what is the smallest minimum degree h(δ, ∆, F) of a ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
asymptotically tight up to a logarithmic factor. In particular for every graph G, we show the existence of subgraphs with either many edges or large minimum degree, and arbitrarily high girth. These subgraphs are created using probabilistic embeddings of a graph into extremal graphs. 1
Finding Large Planar Subgraphs and Large Subgraphs of a Given Genus
 PROC. 2ND INTERNATIONAL COMPUTING AND COMBINATORICS CONFERENCE
, 1996
"... We consider the MAXIMUM PLANAR SUBGRAPH problem  given a graph G, find a largest planar subgraph of G. This problem has applications in circuit layout, facility layout, and graph drawing. We improve to 4/9 the best known approximation ratio for the MAXIMUM PLANAR SUBGRAPH problem. We also consider ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We consider the MAXIMUM PLANAR SUBGRAPH problem  given a graph G, find a largest planar subgraph of G. This problem has applications in circuit layout, facility layout, and graph drawing. We improve to 4/9 the best known approximation ratio for the MAXIMUM PLANAR SUBGRAPH problem. We also consider
Frequent Subgraph Discovery
, 2001
"... Over the years, frequent itemset discovery algorithms have been used to solve various interesting problems. As data mining techniques are being increasingly applied to nontraditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement of th ..."
Abstract

Cited by 407 (14 self)
 Add to MetaCart
computationally efficient algorithm for finding all frequent subgraphs in large graph databases. We evaluated the performance of the algorithm by experiments with synthetic datasets as well as a chemical compound dataset. The empirical results show that our algorithm scales linearly with the number of input
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing
The complexity of theoremproving procedures
 IN STOC
, 1971
"... It is shown that any recognition problem solved by a polynomial timebounded nondeterministic Turing machine can be “reduced” to the problem of determining whether a given propositional formula is a tautology. Here “reduced ” means, roughly speaking, that the first problem can be solved deterministi ..."
Abstract

Cited by 1057 (4 self)
 Add to MetaCart
of two given graphs is isomorphic to a subgraph of the second. Other examples are discussed. A method of measuring the complexity of proof procedures for the predicate calculus is introduced and discussed. Throughout this paper, a set of strings 1 means a set of strings on some fixed, large, finite
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
and maximum stable set problems in perfect graphs, the maximum k partite subgraph problem in graphs, and va...
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
has run for M steps, with M sufficiently large, the distribution governing the state of the chain approximates the desired distribution. Unfortunately it can be difficult to determine how large M needs to be. We describe a simple variant of this method that determines on its own when to stop
Results 1  10
of
82,352