Results 1  10
of
2,494,134
Automatically characterizing large scale program behavior
, 2002
"... Understanding program behavior is at the foundation of computer architecture and program optimization. Many programs have wildly different behavior on even the very largest of scales (over the complete execution of the program). This realization has ramifications for many architectural and compile ..."
Abstract

Cited by 769 (41 self)
 Add to MetaCart
piler techniques, from thread scheduling, to feedback directed optimizations, to the way programs are simulated. However, in order to take advantage of timevarying behavior, we.must first develop the analytical tools necessary to automatically and efficiently analyze program behavior over large sections
Literate programming
 THE COMPUTER JOURNAL
, 1984
"... The author and his associates have been experimenting for the past several years with a programming language and documentation system called WEB. This paper presents WEB by example, and discusses why the new system appears to be an improvement over previous ones. ..."
Abstract

Cited by 549 (3 self)
 Add to MetaCart
The author and his associates have been experimenting for the past several years with a programming language and documentation system called WEB. This paper presents WEB by example, and discusses why the new system appears to be an improvement over previous ones.
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1051 (12 self)
 Add to MetaCart
Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring
MapReduce: Simplified Data Processing on Large Clusters
, 2004
"... MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with t ..."
Abstract

Cited by 3236 (3 self)
 Add to MetaCart
MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1400 (17 self)
 Add to MetaCart
to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the ℓ1minimization problem (‖x‖ℓ1:= i xi) min g∈R n ‖y − Ag‖ℓ1 provided that the support of the vector of errors is not too large, ‖e‖ℓ0: = {i: ei ̸= 0}  ≤ ρ · m
Making LargeScale SVM Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 1846 (17 self)
 Add to MetaCart
learning tasks with many training examples, offtheshelf optimization techniques for general quadratic programs quickly become intractable in their memory and time requirements. SV M light1 is an implementation of an SVM learner which addresses the problem of large tasks. This chapter presents algorithmic
An Overview of the C++ Programming Language
, 1999
"... This overview of C++ presents the key design, programming, and languagetechnical concepts using examples to give the reader a feel for the language. C++ is a generalpurpose programming language with a bias towards systems programming that supports efficient lowlevel computation, data abstraction, ..."
Abstract

Cited by 1766 (15 self)
 Add to MetaCart
This overview of C++ presents the key design, programming, and languagetechnical concepts using examples to give the reader a feel for the language. C++ is a generalpurpose programming language with a bias towards systems programming that supports efficient lowlevel computation, data abstraction
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 612 (12 self)
 Add to MetaCart
to accomplish this, we propose to appropriately generalize the wellknown notion of a separation margin and derive a corresponding maximummargin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our
Results 1  10
of
2,494,134