Results 1  10
of
1,612,626
Estimation of probabilities from sparse data for the language model component of a speech recognizer
 IEEE Transactions on Acoustics, Speech and Signal Processing
, 1987
"... AbstractThe description of a novel type of rngram language model is given. The model offers, via a nonlinear recursive procedure, a computation and space efficient solution to the problem of estimating probabilities from sparse data. This solution compares favorably to other proposed methods. Wh ..."
Abstract

Cited by 799 (2 self)
 Add to MetaCart
, and it is a problem that one always encounters while collecting frequency statistics on words and word sequences (mgrams) from a text of finite size. This means that even for a very large data collection, the maximum likelihood estimation method does not allow Turing’s estimate PT for a probability of a
Sampling Large Databases for Association Rules
, 1996
"... Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce the data ..."
Abstract

Cited by 470 (3 self)
 Add to MetaCart
Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
, where r is the residual vector y − A˜x and t is a positive scalar. We show that if A obeys a uniform uncertainty principle (with unitnormed columns) and if the true parameter vector x is sufficiently sparse (which here roughly guarantees that the model is identifiable), then with very large probability
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 819 (28 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Singular Combinatorics
 ICM 2002 VOL. III 13
, 2002
"... Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures. " ..."
Abstract

Cited by 800 (10 self)
 Add to MetaCart
Combinatorial enumeration leads to counting generating functions presenting a wide variety of analytic types. Properties of generating functions at singularities encode valuable information regarding asymptotic counting and limit probability distributions present in large random structures
The Central Role of the Propensity Score in Observational Studies for Causal Effects.
 Biometrika
, 1983
"... SUMMARY The propensity score is the conditional probability of assignment to a particular treatment given a vector of observed covariates. Both large and small sample theory show that adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates. Application ..."
Abstract

Cited by 2779 (26 self)
 Add to MetaCart
SUMMARY The propensity score is the conditional probability of assignment to a particular treatment given a vector of observed covariates. Both large and small sample theory show that adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates
The Vocabulary Problem in HumanSystem Communication
 COMMUNICATIONS OF THE ACM
, 1987
"... In almost all computer applications, users must enter correct words for the desired objects or actions. For success without extensive training, or in firsttries for new targets, the system must recognize terms that will be chosen spontaneously. We studied spontaneous word choice for objects in five ..."
Abstract

Cited by 562 (8 self)
 Add to MetaCart
in five applicationrelated domains, and found the variability to be surprisingly large. In every case two people favored the same term with probability <0.20. Simulations show how this fundamental property of language limits the success of various design methodologies for vocabularydriven interaction
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 552 (18 self)
 Add to MetaCart
resilience and associated overhead. Our scheme exhibits a nice threshold property: when the number of compromised nodes is less than the threshold, the probability that communications between any additional nodes are compromised is close to zero. This desirable property lowers the initial payoff of smaller
Choices, values and frames.
 American Psychologist,
, 1984
"... Making decisions is like speaking prosepeople do it all the time, knowingly or unknowingly. It is hardly surprising, then, that the topic of decision making is shared by many disciplines, from mathematics and statistics, through economics and political science, to sociology and psychology. The stu ..."
Abstract

Cited by 684 (9 self)
 Add to MetaCart
with specified probabilities. A typical riskless decision concerns the acceptability of a transaction in which a good or a service is exchanged for money or labor. In the first part of this article we present an analysis of the cognitive and psychophysical factors that determine the value of risky prospects
Metabolic stability and epigenesis in randomly connected nets
 Journal of Theoretical Biology
, 1969
"... “The world is either the effect of cause or chance. If the latter, it is a world for all that, that is to say, it is a regular and beautiful structure.” Marcus Aurelius Protoorganisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also r ..."
Abstract

Cited by 657 (5 self)
 Add to MetaCart
“The world is either the effect of cause or chance. If the latter, it is a world for all that, that is to say, it is a regular and beautiful structure.” Marcus Aurelius Protoorganisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also
Results 1  10
of
1,612,626