Results 1  10
of
765,987
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1257 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error
The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets
 JOURNAL OF NETWORK AND COMPUTER APPLICATIONS
, 1999
"... In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental to the des ..."
Abstract

Cited by 469 (42 self)
 Add to MetaCart
In an increasing number of scientific disciplines, large data collections are emerging as important community resources. In this paper, we introduce design principles for a data management architecture called the Data Grid. We describe two basic services that we believe are fundamental
Very simple classification rules perform well on most commonly used datasets
 Machine Learning
, 1993
"... The classification rules induced by machine learning systems are judged by two criteria: their classification accuracy on an independent test set (henceforth "accuracy"), and their complexity. The relationship between these two criteria is, of course, of keen interest to the machin ..."
Abstract

Cited by 542 (5 self)
 Add to MetaCart
to the machine learning community. There are in the literature some indications that very simple rules may achieve surprisingly high accuracy on many datasets. For example, Rendell occasionally remarks that many real world datasets have "few peaks (often just one) " and so are &
Estimating the number of clusters in a dataset via the Gap statistic
, 2000
"... We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference ..."
Abstract

Cited by 492 (1 self)
 Add to MetaCart
We propose a method (the \Gap statistic") for estimating the number of clusters (groups) in a set of data. The technique uses the output of any clustering algorithm (e.g. kmeans or hierarchical), comparing the change in within cluster dispersion to that expected under an appropriate reference null distribution. Some theory is developed for the proposal and a simulation study that shows that the Gap statistic usually outperforms other methods that have been proposed in the literature. We also briey explore application of the same technique to the problem for estimating the number of linear principal components. 1 Introduction Cluster analysis is an important tool for \unsupervised" learning the problem of nding groups in data without the help of a response variable. A major challenge in cluster analysis is estimation of the optimal number of \clusters". Figure 1 (top right) shows a typical plot of an error measure W k (the within cluster dispersion dened below) for a clustering pr...
FastMap: A Fast Algorithm for Indexing, DataMining and Visualization of Traditional and Multimedia Datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types ..."
Abstract

Cited by 497 (23 self)
 Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types of queries, including the `Query By Example' type (which translates to a range query); the `all pairs' query (which translates to a spatial join [8]); the nearestneighbor or bestmatch query, etc. However, designing feature extraction functions can be hard. It is relatively easier for a domain expert to assess the similarity/distance of two objects. Given only the distance information though, it is not obvious how to map objects into points. This is exactly the topic of this paper. We describe a fast algorithm to map objects into points in some kdimensional space (k is userdefined), such that the dissimilarities are preserved. There are two benefits from this mapping: (a) efficient ret...
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Imagenet: A largescale hierarchical image database
 In CVPR
, 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract

Cited by 808 (29 self)
 Add to MetaCart
datasets. Constructing such a largescale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We
BIRCH: an efficient data clustering method for very large databases
 In Proc. of the ACM SIGMOD Intl. Conference on Management of Data (SIGMOD
, 1996
"... Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multidir nensional clataset. Prior work does not adequately address the problem of ..."
Abstract

Cited by 557 (2 self)
 Add to MetaCart
Finding useful patterns in large datasets has attracted considerable interest recently, and one of the most widely st,udied problems in this area is the identification of clusters, or deusel y populated regions, in a multidir nensional clataset. Prior work does not adequately address the problem
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 612 (12 self)
 Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
Results 1  10
of
765,987