Results 1  10
of
10,717
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 752 (14 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
AFNI: software for analysis and visualization of functional magnetic resonance neuroimages
 Computers and Biomedical Research
, 1996
"... email rwcoxmcwedu A package of computer programs for analysis and visualization of threedimensional human brain functional magnetic resonance imaging FMRI results is described The software can color overlay neural activation maps onto higher resolution anatomical scans Slices in each cardinal pl ..."
Abstract

Cited by 807 (3 self)
 Add to MetaCart
plane can be viewed simultaneously Manual placement of markers on anatom ical landmarks allows transformation of anatomical and functional scans into stereotaxic TalairachTournoux coordinates The techniques for automatically generating transformed functional data sets from manually labeled anatomical
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1047 (23 self)
 Add to MetaCart
many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2120 (61 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when
Learning with local and global consistency.
 In NIPS,
, 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract

Cited by 673 (21 self)
 Add to MetaCart
Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic contextfree grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a firstorder r ..."
Abstract

Cited by 1194 (81 self)
 Add to MetaCart
Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic contextfree grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a first
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 604 (15 self)
 Add to MetaCart
In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from
Distortion invariant object recognition in the dynamic link architecture
 IEEE TRANSACTIONS ON COMPUTERS
, 1993
"... We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture exploits correlations in the finescale temporal structure of cellular signals in order to group neurons dynamically into hig ..."
Abstract

Cited by 637 (80 self)
 Add to MetaCart
are represented by sparse graphs, whose vertices are labeled by a multiresolution description in terms of a local power spectrum, and whose edges are labeled by geometrical distance vectors. Object recognition can be formulated as elastic graph matching, which is performed here by stochastic optimization of a
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves stateoftheart results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract

Cited by 1422 (49 self)
 Add to MetaCart
, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a marginsensitive approach for datamining hard negative examples with a formalism we call latent SVM. A latent SVM
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 892 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try
Results 1  10
of
10,717