• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 79,035
Next 10 →

On the Security of Public Key Protocols

by Danny Dolev, Andrew C. Yao , 1983
"... Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however, that an impr ..."
Abstract - Cited by 1383 (0 self) - Add to MetaCart
Recently the use of public key encryption to provide secure network communication has received considerable attention. Such public key systems are usually effective against passive eavesdroppers, who merely tap the lines and try to decipher the message. It has been pointed out, however

Secure Group Communications Using Key Graphs

by Chung Kei Wong, Mohamed Gouda , Simon S. Lam - SIGCOMM '98 , 1998
"... Many emerging applications (e.g., teleconference, real-time information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract - Cited by 556 (17 self) - Add to MetaCart
management. We formalize the notion of a secure group as a triple (U; K;R) where U denotes a set of users, K a set of keys held by the users, and R a user-key relation. We then introduce key graphs to specify secure groups. For a special class of key graphs, we present three strategies for securely

Selection of relevant features and examples in machine learning

by Avrim L. Blum, Pat Langley - ARTIFICIAL INTELLIGENCE , 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract - Cited by 606 (2 self) - Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been

Object Recognition from Local Scale-Invariant Features

by David G. Lowe
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract - Cited by 2739 (13 self) - Add to MetaCart
in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients

Activity recognition from user-annotated acceleration data

by Ling Bao, Stephen S. Intille , 2004
"... In this work, algorithms are developed and evaluated to detect physical activities from data acquired using five small biaxial accelerometers worn simultaneously on different parts of the body. Acceleration data was collected from 20 subjects without researcher supervision or observation. Subjects ..."
Abstract - Cited by 515 (7 self) - Add to MetaCart
. Subjects were asked to perform a sequence of everyday tasks but not told specifically where or how to do them. Mean, energy, frequency-domain entropy, and correlation of acceleration data was calculated and several classifiers using these features were tested. Decision tree classifiers showed the best

Mean shift: A robust approach toward feature space analysis

by Dorin Comaniciu, Peter Meer - In PAMI , 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract - Cited by 2395 (37 self) - Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data

Rapid object detection using a boosted cascade of simple features

by Paul Viola, Michael Jones - ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 , 2001
"... This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " ..."
Abstract - Cited by 3283 (9 self) - Add to MetaCart
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called

USER ACCEPTANCE OF INFORMATION TECHNOLOGY: TOWARD A UNIFIED VIEW

by Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, Fred D. Davis , 2003
"... Information technology (IT) acceptance research has yielded many competing models, each with different sets of acceptance determinants. In this paper, we (1) review user acceptance literature and discuss eight prominent models, (2) empirically compare the eight models and their extensions, (3) formu ..."
Abstract - Cited by 1807 (10 self) - Add to MetaCart
of the variance in user intentions to use information technology. Next, a unified model, called the Unified Theory of Acceptance and Use of Technology (UTAUT), was formulated, with four core determinants of intention and usage, and up to four moderators of key relationships. UTAUT was then tested using

Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors

by Takeshi Sakaki, Makoto Okazaki, Yutaka Matsuo - In Proceedings of the Nineteenth International WWW Conference (WWW2010). ACM , 2010
"... Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its real-time nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence ..."
Abstract - Cited by 524 (4 self) - Add to MetaCart
promptly, simply by observing the tweets. As described in this paper, we investigate the real-time interaction of events such as earthquakes, in Twitter, and propose an algorithm to monitor tweets and to detect a target event. To detect a target event, we devise a classifier of tweets based on features

Video google: A text retrieval approach to object matching in videos

by Josef Sivic, Andrew Zisserman - In ICCV , 2003
"... We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, ill ..."
Abstract - Cited by 1636 (42 self) - Add to MetaCart
-computed (using vector quantization), and inverted file systems and document rankings are used. The result is that retrieval is immediate, returning a ranked list of key frames/shots in the manner of Google. The method is illustrated for matching on two full length feature films. 1.
Next 10 →
Results 1 - 10 of 79,035
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University