Results 1 
2 of
2
A Methodological View of Constraint Solving
, 1996
"... Constraints have become very popular during the last decade. Constraints allow to define sets of data by means of logical formulae. Our goal here is to survey the notion of constraint system and to give examples of constraint systems operating on various domains, such as natural, rational or real nu ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
the paper to illustrate the concepts and methods. We also discuss applications of constraints to various fields, such as programming, operations research, and theorem proving. y CNRS and LRI, Bat. 490, Universit'e de Paris Sud, 91405 ORSAY Cedex, France fcomon, jouannaudg@lri.lri.fr z COSYTEC, Parc
Syntacticness, CycleSyntacticness and Shallow Theories
 INFORMATION AND COMPUTATION
, 1994
"... Solving equations in the free algebra T (F; X) (i.e. unification) uses the two rules: f(~s) = f( ~ t) ! ~s = ~ t (decomposition) and s[x] = x !? (occurcheck). These two rules are not correct in quotients of T (F; X) by a finitely generated congruence =E . Following C. Kirchner, we first define cl ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Solving equations in the free algebra T (F; X) (i.e. unification) uses the two rules: f(~s) = f( ~ t) ! ~s = ~ t (decomposition) and s[x] = x !? (occurcheck). These two rules are not correct in quotients of T (F; X) by a finitely generated congruence =E . Following C. Kirchner, we first define classes of equational theories (called syntactic and cycle syntactic respectively) for which it is possible to derive some rules replacing the two above ones. Then, we show that these abstract classes are relevant: all shallow theories, i.e. theories which can be generated by equations in which variables occur at depth at most one, are both syntactic and cycle syntactic. Moreover, the new set of unification rules is terminating, which proves that unification is decidable and finitary in shallow theories. We give still further extensions. If the set of equivalence classes is infinite, a problem which turns out to be decidable in shallow theories, then shallow theories fulfill Colmerauer's indep...