• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 11,714
Next 10 →

Counterexample-guided Abstraction Refinement

by Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut Veith , 2000
"... We present an automatic iterative abstraction-refinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new symb ..."
Abstract - Cited by 843 (71 self) - Add to MetaCart
We present an automatic iterative abstraction-refinement methodology in which the initial abstract model is generated by an automatic analysis of the control structures in the program to be verified. Abstract models may admit erroneous (or "spurious") counterexamples. We devise new

Greedy Randomized Adaptive Search Procedures

by Mauricio G. C. Resende , Celso C. Ribeiro , 2002
"... GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract - Cited by 647 (82 self) - Add to MetaCart
GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search

An iterative method for the solution of the eigenvalue problem of linear differential and integral

by Cornelius Lanczos , 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract - Cited by 537 (0 self) - Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.

Projection Pursuit Regression

by Jerome H. Friedman, Werner Stuetzle - Journal of the American Statistical Association , 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract - Cited by 550 (6 self) - Add to MetaCart
A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures

The algorithmic analysis of hybrid systems

by R. Alur, C. Courcoubetis, N. Halbwachs , T. A. Henzinger, P.-H. Ho, X. Nicollin , A. Olivero , J. Sifakis , S. Yovine - THEORETICAL COMPUTER SCIENCE , 1995
"... We present a general framework for the formal specification and algorithmic analysis of hybrid systems. A hybrid system consists of a discrete program with an analog environment. We model hybrid systems as nite automata equipped with variables that evolve continuously with time according to dynamica ..."
Abstract - Cited by 778 (71 self) - Add to MetaCart
to linear hybrid systems. In particular, we consider symbolic model-checking and minimization procedures that are based on the reachability analysis of an infinite state space. The procedures iteratively compute state sets that are definable as unions of convex polyhedra in multidimensional real space. We

Unsupervised word sense disambiguation rivaling supervised methods

by David Yarowsky - IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract - Cited by 638 (4 self) - Add to MetaCart
one sense per discourse and one sense per collocation -- exploited in an iterative bootstrapping procedure. Tested accuracy exceeds 96%.

Diagnosing multiple faults.

by Johan De Kleer , Brian C Williams - Artificial Intelligence, , 1987
"... Abstract Diagnostic tasks require determining the differences between a model of an artifact and the artifact itself. The differences between the manifested behavior of the artifact and the predicted behavior of the model guide the search for the differences between the artifact and its model. The ..."
Abstract - Cited by 808 (62 self) - Add to MetaCart
procedure. Third, the diagnostic procedure is incremental, exploiting the iterative nature of diagnosis. Fourth, a clear separation is drawn between diagnosis and behavior prediction, resulting in a domain (and inference procedure) independent diagnostic procedure. Fifth, GDE combines modelbased prediction

Mean shift, mode seeking, and clustering

by Yizong Cheng - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1995
"... Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking proce ..."
Abstract - Cited by 624 (0 self) - Add to MetaCart
Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode

Progressive Meshes

by Hugues Hoppe
"... Highly detailed geometric models are rapidly becoming commonplace in computer graphics. These models, often represented as complex triangle meshes, challenge rendering performance, transmission bandwidth, and storage capacities. This paper introduces the progressive mesh (PM) representation, a new s ..."
Abstract - Cited by 1315 (11 self) - Add to MetaCart
scheme for storing and transmitting arbitrary triangle meshes. This efficient, lossless, continuous-resolution representation addresses several practical problems in graphics: smooth geomorphing of level-of-detail approximations, progressive transmission, mesh compression, and selective refinement

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

by Stephen F Altschul , Thomas L Madden , Alejandro A Schäffer , Jinghui Zhang , Zheng Zhang , Webb Miller , David J Lipman - Nucleic Acids Res. , 1997
"... ABSTRACT The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantia ..."
Abstract - Cited by 8572 (88 self) - Add to MetaCart
ABSTRACT The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased
Next 10 →
Results 1 - 10 of 11,714
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University