• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 18,741
Next 10 →

From SHIQ and RDF to OWL: The Making of a Web Ontology Language

by Ian Horrocks, Peter F. Patel-Schneider, Frank Van Harmelen - Journal of Web Semantics , 2003
"... The OWL Web Ontology Language is a new formal language for representing ontologies in the Semantic Web. OWL has features from several families of representation languages, including primarily Description Logics and frames. OWL also shares many characteristics with RDF, the W3C base of the Semantic W ..."
Abstract - Cited by 615 (39 self) - Add to MetaCart
The OWL Web Ontology Language is a new formal language for representing ontologies in the Semantic Web. OWL has features from several families of representation languages, including primarily Description Logics and frames. OWL also shares many characteristics with RDF, the W3C base of the Semantic

Efficient and Effective Clustering Methods for Spatial Data Mining

by Raymond T. Ng, Jiawei Han , 1994
"... Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which ..."
Abstract - Cited by 709 (37 self) - Add to MetaCart
Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which

Understanding packet delivery performance in dense wireless sensor networks

by Jerry Zhao , 2003
"... Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery ..."
Abstract - Cited by 661 (15 self) - Add to MetaCart
performance:the spatio-temporal characteristics of packet loss, and its environmental dependence. These factors will deeply impact the performance of data acquisition from these networks. In this paper, we report on a systematic medium-scale (up to sixty nodes) measurement of packet delivery in three

Machine Learning in Automated Text Categorization

by Fabrizio Sebastiani - ACM COMPUTING SURVEYS , 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract - Cited by 1734 (22 self) - Add to MetaCart
The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach

Supervised and unsupervised discretization of continuous features

by James Dougherty, Ron Kohavi, Mehran Sahami - in A. Prieditis & S. Russell, eds, Machine Learning: Proceedings of the Twelfth International Conference , 1995
"... Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised dis ..."
Abstract - Cited by 540 (11 self) - Add to MetaCart
Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised

Eye movements in reading and information processing: 20 years of research

by Keith Rayner - Psychological Bulletin , 1998
"... Recent studies of eye movements in reading and other information processing tasks, such as music reading, typing, visual search, and scene perception, are reviewed. The major emphasis of the review is on reading as a specific example of cognitive processing. Basic topics discussed with respect to re ..."
Abstract - Cited by 917 (28 self) - Add to MetaCart
to reading are (a) the characteristics of eye movements, (b) the perceptual span, (c) integration of information across saccades, (d) eye movement control, and (e) individual differences (including dyslexia). Similar topics are discussed with respect to the other tasks examined. The basic theme of the review

A closed-form solution for options with stochastic volatility with applications to bond and currency options

by Steven L. Heston - Review of Financial Studies , 1993
"... I use a new technique to derive a closed-form solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond option ..."
Abstract - Cited by 1512 (6 self) - Add to MetaCart
I use a new technique to derive a closed-form solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond

SMOTE: Synthetic Minority Over-sampling Technique

by Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer - Journal of Artificial Intelligence Research , 2002
"... An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentag ..."
Abstract - Cited by 634 (27 self) - Add to MetaCart
percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a

Commercial Bank Interest characteristic-acros

by Harry Huizinga , 1998
"... reflect differences in bank ..."
Abstract - Add to MetaCart
reflect differences in bank

Model-Based Analysis of Oligonucleotide Arrays: Model Validation, Design Issues and Standard Error Application

by Cheng Li, Wing Hung Wong , 2001
"... Background: A model-based analysis of oligonucleotide expression arrays we developed previously uses a probe-sensitivity index to capture the response characteristic of a specific probe pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it as a measure of ..."
Abstract - Cited by 775 (28 self) - Add to MetaCart
Background: A model-based analysis of oligonucleotide expression arrays we developed previously uses a probe-sensitivity index to capture the response characteristic of a specific probe pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it as a measure
Next 10 →
Results 1 - 10 of 18,741
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University