Results 1  10
of
448,299
Calibrating noise to sensitivity in private data analysis
 In Proceedings of the 3rd Theory of Cryptography Conference
, 2006
"... Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f to the datab ..."
Abstract

Cited by 630 (57 self)
 Add to MetaCart
Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 695 (2 self)
 Add to MetaCart
in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 702 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Bagging Predictors
 Machine Learning
, 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract

Cited by 3574 (1 self)
 Add to MetaCart
of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy. 1. Introduction A learning set of L consists of data f(y n ; x n ), n = 1; : : : ; Ng where the y's are either class labels or a numerical response. We have a
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
Iterative ShrinkageThresholding Algorithm (FISTA) which preserves the computational simplicity of ISTA, but with a global rate of convergence which is proven to be significantly better, both theoretically and practically. Initial promising numerical results for waveletbased image deblurring demonstrate
A Sense of Self for Unix Processes
 In Proceedings of the 1996 IEEE Symposium on Security and Privacy
, 1996
"... A method for anomaly detection is introduced in which "normal" is defined by shortrange correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common ..."
Abstract

Cited by 684 (29 self)
 Add to MetaCart
A method for anomaly detection is introduced in which "normal" is defined by shortrange correlations in a process ' system calls. Initial experiments suggest that the definition is stable during normal behavior for standard UNIX programs. Further, it is able to detect several common
SPECTRUM OF INITIAL PERTURBATIONS IN OPEN AND CLOSED INFLATIONARY MODELS
, 1996
"... Abstract. Spectrum of initial scalar and tensor perturbations created during an inflationary stage producing a closed or open FRW universe now is discussed. In the closed case, the CMB temperature anisotropy ∆T/T generated by scalar perturbations is enhanced for low multipoles. It is argued that in ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. Spectrum of initial scalar and tensor perturbations created during an inflationary stage producing a closed or open FRW universe now is discussed. In the closed case, the CMB temperature anisotropy ∆T/T generated by scalar perturbations is enhanced for low multipoles. It is argued
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
. The core of this method is a simple hillclimbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distancebased method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment
Results 1  10
of
448,299