Results 1 - 10
of
775,054
The CN2 Induction Algorithm
- MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract
-
Cited by 884 (6 self)
- Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple
Induction of Decision Trees
- MACH. LEARN
, 1986
"... The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such syste ..."
Abstract
-
Cited by 4303 (4 self)
- Add to MetaCart
The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one
Wrapper Induction for Information Extraction
, 1997
"... The Internet presents numerous sources of useful information---telephone directories, product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have been built that automatically gather and manipulate such information on a user's behalf. However, these resources are usually ..."
Abstract
-
Cited by 612 (30 self)
- Add to MetaCart
introduce wrapper induction, a technique for automatically constructing wrappers. Our techniques can be described in terms of three main contributions. First, we pose the problem of wrapper construction as one of inductive learn...
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract
-
Cited by 1257 (21 self)
- Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recently-proposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.
by the Inductive Method?
, 2006
"... Abstract. The version of Kerberos presented by Burrows et al. [5] is fully mechanised using the Inductive Method. Two models are presented, allowing respectively the leak of any session keys, and of expired session keys. Thanks to timestamping, the protocol provides the involved par-ties with strong ..."
Abstract
- Add to MetaCart
Abstract. The version of Kerberos presented by Burrows et al. [5] is fully mechanised using the Inductive Method. Two models are presented, allowing respectively the leak of any session keys, and of expired session keys. Thanks to timestamping, the protocol provides the involved par
A Bayesian method for the induction of probabilistic networks from data
- MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract
-
Cited by 1381 (32 self)
- Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract
-
Cited by 641 (8 self)
- Add to MetaCart
Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs) are particularly promising because they are very accurate, quick to train, and quick to evaluate. 1.1 Keywords Text categorization, classification, support vector machines, machine learning, information management.
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
- PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract
-
Cited by 1772 (10 self)
- Add to MetaCart
rate to schoolchildren. LSA uses no prior linguistic or perceptual similarity knowledge; it is based solely on a general mathematical learning method that achieves powerful inductive effects by extracting the right number of dimensions (e.g., 300) to represent objects and contexts. Relations to other
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract
-
Cited by 887 (4 self)
- Add to MetaCart
to minimize misclassifications of just those particular examples. The paper presents an analysis of why TSVMs are well suited for text classification. These theoretical findings are supported by experiments on three test collections. The experiments show substantial improvements over inductive methods
Results 1 - 10
of
775,054