• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 48,004
Next 10 →

EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

by Arnaud Delorme, Scott Makeig - J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the cross-platform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract - Cited by 886 (45 self) - Add to MetaCart
information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel

Blind Signal Separation: Statistical Principles

by Jean-Francois Cardoso , 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract - Cited by 529 (4 self) - Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption

Blind Beamforming for Non Gaussian Signals

by Jean-François Cardoso, Antoine Souloumiac - IEE Proceedings-F , 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract - Cited by 719 (31 self) - Add to MetaCart
range of parameters, even when the array is perfectly known to the informed beamformer. The key assumption blind identification relies on is the statistical independence of the sources, which we exploit using fourth-order cumulants. A computationally efficient technique is presented for the blind

Survey on Independent Component Analysis

by Aapo Hyvärinen - NEURAL COMPUTING SURVEYS , 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract - Cited by 2309 (104 self) - Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation

Equivariant Adaptive Source Separation

by Jean-François Cardoso, Beate Laheld - IEEE Trans. on Signal Processing , 1996
"... Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI (Eq ..."
Abstract - Cited by 449 (9 self) - Add to MetaCart
Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI

A new learning algorithm for blind signal separation

by S. Amari, A. Cichocki, H. H. Yang - , 1996
"... A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract - Cited by 622 (80 self) - Add to MetaCart
A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number

The rate-distortion function for source coding with side information at the decoder

by Aaron D. Wyner, Jacob Ziv - IEEE Trans. Inform. Theory , 1976
"... Abstract-Let {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract - Cited by 1060 (1 self) - Add to MetaCart
Abstract-Let {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a

Kernel independent component analysis

by Francis R. Bach - Journal of Machine Learning Research , 2002
"... We present a class of algorithms for independent component analysis (ICA) which use contrast functions based on canonical correlations in a reproducing kernel Hilbert space. On the one hand, we show that our contrast functions are related to mutual information and have desirable mathematical propert ..."
Abstract - Cited by 464 (24 self) - Add to MetaCart
We present a class of algorithms for independent component analysis (ICA) which use contrast functions based on canonical correlations in a reproducing kernel Hilbert space. On the one hand, we show that our contrast functions are related to mutual information and have desirable mathematical

RSVP: A New Resource Reservation Protocol

by Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, et al. , 1993
"... Whe origin of the RSVP protocol can be traced back to 1991, when a team of network researchers, including myself, started playing with a number of packet scheduling algorithms on the DARTNET (DARPA Testbed NETwork), a network testbed made of open source, workstation-based routers. Because scheduling ..."
Abstract - Cited by 1005 (25 self) - Add to MetaCart
-state approach, two-way signaling message exchanges, receiver-based resource reservation, and being independent from all other related components in a QOS support architecture, such as flow-specification, admission control, scheduling algorithm, and routing. As stated in the article, “RSVP is primarily a vehicle

A Survey of Image Registration Techniques

by Lisa Gottesfeld Brown - ACM Computing Surveys , 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract - Cited by 979 (2 self) - Add to MetaCart
. These techniques have been independently studied for several different applications resulting in a large body of research. This paper organizes this material by establishing the relationship between the distortions in the image and the type of registration techniques which are most suitable. Two major types
Next 10 →
Results 1 - 10 of 48,004
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University