• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 16,814
Next 10 →

Key independent optimality

by John Iacono - In International Symp. on Algorithms and Computation , 2002
"... A new form of optimality for comparison based static dictionaries is introduced. This type of optimality, keyindependent optimality, is motivated by applications that assign key values randomly. It is shown that any data structure that is key-independently optimal is expected to execute any access s ..."
Abstract - Cited by 8 (2 self) - Add to MetaCart
A new form of optimality for comparison based static dictionaries is introduced. This type of optimality, keyindependent optimality, is motivated by applications that assign key values randomly. It is shown that any data structure that is key-independently optimal is expected to execute any access

Learnability in Optimality Theory

by Bruce Tesar, Paul Smolensky , 1995
"... In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given gr ..."
Abstract - Cited by 529 (35 self) - Add to MetaCart
In this article we show how Optimality Theory yields a highly general Constraint Demotion principle for grammar learning. The resulting learning procedure specifically exploits the grammatical structure of Optimality Theory, independent of the content of substantive constraints defining any given

Fast and robust fixed-point algorithms for independent component analysis

by Aapo Hyvärinen - IEEE TRANS. NEURAL NETW , 1999
"... Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s informat ..."
Abstract - Cited by 884 (34 self) - Add to MetaCart
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, we use a combination of two different approaches for linear ICA: Comon’s

On the optimality of the simple Bayesian classifier under zero-one loss

by Pedro Domingos, Michael Pazzani - MACHINE LEARNING , 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract - Cited by 818 (27 self) - Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains

High performance scalable image compression with EBCOT

by David Taubman - IEEE Trans. Image Processing , 2000
"... A new image compression algorithm is proposed, based on independent Embedded Block Coding with Optimized Truncation of the embedded bit-streams (EBCOT). The algorithm exhibits state-of-the-art compression performance while producing a bit-stream with a rich feature set, including resolution and SNR ..."
Abstract - Cited by 586 (11 self) - Add to MetaCart
A new image compression algorithm is proposed, based on independent Embedded Block Coding with Optimized Truncation of the embedded bit-streams (EBCOT). The algorithm exhibits state-of-the-art compression performance while producing a bit-stream with a rich feature set, including resolution and SNR

On the algorithmic implementation of multi-class kernel-based vector machines

by Koby Crammer, Yoram Singer, Nello Cristianini, John Shawe-taylor, Bob Williamson - Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernel-based vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract - Cited by 559 (13 self) - Add to MetaCart
objective function. Unlike most of previous approaches which typically decompose a multiclass problem into multiple independent binary classification tasks, our notion of margin yields a direct method for training multiclass predictors. By using the dual of the optimization problem we are able

High dimensional graphs and variable selection with the Lasso

by Nicolai Meinshausen, Peter Bühlmann - ANNALS OF STATISTICS , 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract - Cited by 736 (22 self) - Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso

Cognitive architecture and instructional design

by John Sweller, Jeroen J. G. Van Merrienboer, Fred G. W. C. Paas - Educational Psychology Review , 1998
"... Cognitive load theory has been designed to provide guidelines intended to assist in the presentation of information in a manner that encourages learner activities that optimize intellectual performance. The theory assumes a limited capacity working memory that includes partially independent subcompo ..."
Abstract - Cited by 503 (53 self) - Add to MetaCart
Cognitive load theory has been designed to provide guidelines intended to assist in the presentation of information in a manner that encourages learner activities that optimize intellectual performance. The theory assumes a limited capacity working memory that includes partially independent

What Can Economists Learn from Happiness Research?

by Bruno S. Frey, Alois Stutzer - FORTHCOMING IN JOURNAL OF ECONOMIC LITERATURE , 2002
"... Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a self-evident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows that e ..."
Abstract - Cited by 545 (24 self) - Add to MetaCart
Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a self-evident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows

A Survey of Image Registration Techniques

by Lisa Gottesfeld Brown - ACM Computing Surveys , 1992
"... Registration is a fundamental task in image processing used to match two or more pictures taken, for example, at different times, from different sensors or from different viewpoints. Over the years, a broad range of techniques have been developed for the various types of data and problems. These ..."
Abstract - Cited by 979 (2 self) - Add to MetaCart
. These techniques have been independently studied for several different applications resulting in a large body of research. This paper organizes this material by establishing the relationship between the distortions in the image and the type of registration techniques which are most suitable. Two major types
Next 10 →
Results 1 - 10 of 16,814
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University